

Innovative Non- invasive diagnostic tool for HCV infection in Egyptian patients.

A thesis submitted for partial fulfillment of Master Degree in Internal Medicine

By Olla Abdalla Elshahat Mohammed

M.B., B.CH. Ain Shams University

Supervised by

Prof. Dr. Ahmed Shawky Elsawaby

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Ali Monis

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Mohamed Elsawy

Consultant of Gastroenterology & Hepatology of the Egyptian Armed Forces

Faculty of Medicine Ain Shams University 2016

Acknowledgement

First and foremost, thanks to Allah, the Most Gracious, the Most Merciful.

I would like to express my true and deep gratitude for **Prof. Dr.**Ahmed Shawky Elsawaby, Professor of Internal Medicine,

Gastroenterology & Hepatology, Faculty of Medicine, Ain Shams

University, for his precious help and beneficial advices throughout this thesis. It has been a great honor to work under his supervision.

Words stand short to express my deep appreciation for Prof. **Dr. Ahmed Ali Monis,** Professor of Internal Medicine, Gastroenterology & Hepatology, Faculty of Medicine, Ain Shams University, who kindly helped & support me in this study.

I would like also to extend my thanks to Prof **Dr. Ahmed Mohamed Elsawy**, consultant of gastroenterology & hepatology of the Egyptian armed force, for his sincere guidance, remarkable thoughts in the current study & his great help.

A great thanks for Brigadier general engineer **Ahmed Amien**, inventor of the C-FAST device for his help $\mathcal L$ support in this study who make the device available for me at any time.

Special Thanks for Engineer **Tarek Diaa eldin Abdelfattah** & Engineer **Amr Abdalla Elsayed** for their help & effort & being available at any time to finish this study.

Finally, many thanks to my **Family** for pushing me forward in every step in my life I standing beside me supporting I encouraging me.

🖎 Olla Abdalla Elshahat Mohammed

بِسْمِ اللهِ الرَّحمَٰنِ الرَّحيمِ
(...رَبِّ أَوزعنِي أَن أَشكُرَ نِعمَتكَ
الَّتِي أَنْعَمْتَ عَلَيَّ وعَلى والِدَيَّ
وأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وأَدْخِلْنِي
بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)
مدق الله العظيم

List of content

Page No.	Subject.
List of Figures	II
List of Tables	III
List of Abbreviations	V
Introduction	1
Aim of the Study	5
Review of Literature	
Hepatitis C	11
C- FAST	51
Patients and Methods	57
Results	63
Discussion	75
Summary	81
Conclusion	85
Recommendations	87
References	91
Arabic Summary	107

List of Figures

Figure No.	Title	Pa _l	ge No.
Figure (1): Genome			
processing	• • • • • • • • • • • • • • • • • • • •		<i>17</i>
Figure (2): Model str	ucture L genome	organizatio	19
Figure (3): The probe	of Fibroscan	•••••	43
Figure (4): Positionin	g of patient for f	ibrosis	43
Figure (5): C-FAST d	levice	5	6
Figure (6): Examinat device		by using C-FA5	
Figure (7): Description	on of personal da	ta among cases	. 66
Figure (8): Description	n of PCR (IV / m	l) among cases	68
Figure (9): Viraemia g	grade among case.	s (68
Figure (10): Descripti	on of C-FAST an	nong cases 6	59
Figure (11): Agreemen	nt between C-FA	ST and PCR as re	egard
Figure (12): Relation	between PCR co	unt and gender oj	fthe
cases			<i>74</i> .

List of Tables

Table No).	Title	Page No.
Table (1):			of HCV proteins. MW, 18
Table (2):	_	=	n of severity of liver 26
Table (3):	HCV-relate	ed extrahepatic	manifestations27
Table(4): (Clinical sign	ificances of live	er function tests39
Table (5):			the European Union in48
<i>Table (6):</i>	Descriptio	n of personal d	lata among cases 66
	cases		'ml) and C-FAST among 67 .
			PV and NPV of C-FAST
Table (9):	_		AST and PCR as regard HCV
Table (10)			ST agreement with PCR and nder72
Table (11)			result and each of cases' age72

Ш

List of Tables (cont.)

Page No.

.....73

Table (12): Correlation between PCR result and cases' age .. 73 Table (13): Relation between PCR count and gender of the cases

Table No.

-IV-

List of Abbreviations

Abb.	Full term
AFP	Alpha fetoprotein
Alb	Albumin
ALT	Alanine Aminotransferase
AST	Aspartate Aminotransferase
AUC	Area under the curve
CBC	Complete Blood Count
Cm	Centimeter
Creat.	Creatinine
DAA	Directly acting antiviral
Dl	Deciliter
G	Gram
Eff	Efficiacy
EIA	Enzyme – linked immunoassays
FN	False negative
FP	False positive
НСС	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HS	Highly significant
IBD	Irritable bowel disease
Kd	Kilodalton
MELD	Model for End-stage Liver Disease
Mg	Milligram
Ml	Milliliter
Mm	Millimeter
mm Hg	Millimeter mercury
N*	Negative
Na	Sodium
No	Number
	-V-

NPV	Negative Predictive value
NS	Non significant
P*	Positive
PCR	Polymerase chain reaction
PEM	Protein energy malnutrition
PPV	Positive Predictive value
PT	Prothrombine time
Sn	Sensitivity
Sp	Specificity
TN	True negative
TP	True positive

Introduction

Introduction

Hepatitis C virus (HCV) infection is one of the main causes of chronic liver disease worldwide. The long-term impact of HCV infection is highly variable, ranging from minimal histological changes to extensive fibrosis and cirrhosis with or without hepatocellular carcinoma (HCC). The number of chronically infected persons worldwide is estimated to be about 160 million, but most are unaware of their infection. The implementation of extended criteria for screening for HCV is a subject of major debate among different stakeholders. Clinical care for patients with HCV-related liver disease has advanced considerably during the last two decades, thanks to an enhanced understanding of the pathophysiology of the disease, and because of developments in diagnostic procedures and improvements in therapy and prevention (*Lavanchy D* et al., 2011).

HCV genotype 4 (HCV-4) infection is common in the Middle East and in Africa, where it is responsible for more than 80% of HCV infections. HCV-4 is considered a major cause of chronic liver disease and cirrhosis, which leads to liver failure and is the root cause of hepatocellular carcinoma (**Nguyen M. et al., 2005**).

Diagnosis of Chronic HCV infection is based on the presence of both anti-HCV antibodies, detected by enzyme immunoassays, and HCV RNA, detected by molecular assays. HCV RNA testing is essential for the management of HCV. The most recent assays are based on the use of real-time polymerase chain reaction (PCR). They can detect minute amount of HCV RNA (down to 10 international units IU / ml) and accurately quantify HCV RNA levels up to approximately 10^7 IU / ml.

Their dynamic range of quantification adequately covers the clinical needs for diagnosis and monitoring (Chevalize S et al.,2008).

C- Fast is a new invented device for the detection of HCV RNA which depends on that every molecule in nature has its own molecular signature electromagnetic signal which the device can detect it after programming the device (Gamal S. et al., 2013).

Aim of the Study

Aim of the study

The aim of the present study is to assess if we can use C-Fast instead of PCR in detection of HCV infection in Egyptian patients.

Review of Literature