Recent Advances in Management of Gastric Cancer

An Essay

By

Mohammed Ahmed Momtaz Haykal

M.B.B.Ch. Ain Shams University

Supervised by

Prof. Dr. Ayman Abdalla Abd Rabo

Professor of General Surgery

Faculty of Medicine - Ain Shams University

Dr. Mohammed Mohammed Matar

Lecturer of General Surgery

Faculty of Medicine – Ain Shams University

Dr. Ahmed Sami Mohammed

Lecturer of General Surgery

Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2016

Acknowledgments

First and foremost I would like to thank **God** for all of His blessings, for guiding me throughout my life and for giving me the patience and wisdom to undertake this endeavor.

I would like to express my deep appreciation to Prof. **Dr. Ayman Abdalla Abd Rabo**, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his support and guidance throughout the whole work. It is a great honor to have worked under his supervision.

I would also like to thank **Dr. Mohammed Matar**, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, and **Dr. Ahmed Sami**, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, for their continous help and the tremendous effort that they had put forth in the meticulous revision of this work.

To **my family**, I'm forever grateful for your support and encouragement and for always putting my needs before you.

Mohammed Ahmed Momtaz Haykal

Contents

1. List of Abbreviationsi
2. List of Figuresiii
3. List of Tablesv
4. Aim of the workvi
5. Chapter 1-Introduction1
6. Chapter 2-Anatomy4
7. Chapter 3-Etiopathogenesis11
8. Chapter 4-Current Diagnosis of Gastric cancer24
9. Chapter 5-Recent Advances in Diagnosis of Gastric Cancer
10. Chapter 6-Current Treatment of Gastric Cancer53
11. Chapter 7-Recent Advances in Treatment of Gastric Cancer
12. Chapter 8-Summary92
13. Chapter 9-Refrences95
14. Chapter 10-Arabic Summary119

List of Abbreviations

1	¹⁸ F-FDG	¹⁸ Fluorine Fluoro-2-Deoxy-d-Glucose Positron	
	PET/CT Scan	Emission Tomography/Computed Tomography	
2	5-ALA	5-Aminolevulinic Acid	
3	5-FU	5-Fluorouracil	
4	ABCG2	ATP-binding Cassette Transporter G2	
5	AGC	Advanced Gastric Cancer	
6	AJCC	American Joint Committee on Cancer	
7	ASPDA	Anterior Superior Pancreaticoduodenal Artery	
8	BMI	Body Mass Index	
9	CA	Cancer-related Antigen	
10	CEA	Carcinoembryonic Antigen	
11	CECT	Contrast Enhancement Computed Tomography	
12	СНА	Common Hepatic Artery	
13	CLE	Confocal Laser Endomicroscopy	
14	CRT	Chemo-radiotherapy	
15	CSC	Cancer Stem Cells	
16	CT	Computed Tomography	
17	DCF	Docetaxel, Cisplatin, 5- Fluorouracil	
18	DG	Distal Gastrectomy	
19	ECF	Epirubicin, Cisplatin, 5-Fluorouracil	
20	ECL	Enterochromaffin-like Cells	
21	ECX	Epirubicin, Cisplatin, Capecitabine	
22	EGC	Early Gastric Cancer	
23	EGFR	Epidermal Growth Factor Receptor	
24	EGJ	Esophagogastric Junction	
25	EMR	Endoscopic Mucosal Resection	
26	ESD	Endoscopic Submucosal Dissection	
27	EUS	Endoscopic Ultrasonography	
28	FGFR2	Fibroblastic Growth Factor Receptor 2	
29	FISH	Fluorescence in situ Hybridization	
30	GC	Gastric Cancer	
31	GDA	Gastroduodenal Artery	
32	HDGC	Hereditary Gastric Cancer	
33	HDL	Hepatoduodenal Ligament	
34	HER2	Human Epidermal Growth Factor Receptor 2	
35	HGF	Hepatocyte Growth Factor	
36	ICC	Indigo Carmine Chromoendoscopy	
37	IHC	Immunohistochemistry	
38	IM	Intestinal Metaplasia	
39	LADG	Laparoscopy-Assisted Distal Gastrectomy	

40	LAG	Laparoscopy-Assisted Gastrectomy	
41	LATG	Laparoscopy-Assisted Total Gastrectomy	
42	LGA	Left Gastric Artery	
43	LGEA	Left Gastro-epiploic Artery	
44	lncRNA	long non-coding RNA	
45	MDCT	Multidetector Row Computed Tomography	
46	ME-NBI	Magnifying Endoscopy with Narrow-Band	
		Imaging	
47	miRNA	microRNA	
48	MRI	Magnetic Resonance Imaging	
49	MS	Microsurface structures	
50	MV	Microvascular pattern	
51	OTG	Open Total Gastrectomy	
52	PDD	Photodynamic Diagnostics	
53	PPG	Pylorus-Preserving Gastrectomy	
54	PpIX	Protoporphyrin IX	
55	RECIST	Response Evaluation Criteria in Solid Tumors	
56	RGA	Right Gastric Artery	
57	RGEA	Right Gastro-epiploic Artery	
58	SEER	Surveillance, Epidemiology and End Results	
59	SNP	Single Nucleotide Polymorphisms	
60	SPEM	Spasmolytic Polypeptide-Expressing	
		Metaplasia	
61	TG	Total Gastrectomy	
62	TLG	Totally Laparoscopic Gastrectomy	
63	TNFA	Tumour Necrosis Factor-Alpha	
64	TNM	Tumor Node Metastasis	
65	TSG	Tumor Suppressor Gene	
66	VEGF	Vascular Endothelial Growth Factor	
67	WLE	White Light Endoscopy	

List of Figures

Figure No.	Title	Page No.
1	Stomach Anatomy	4
2	Musclar layers of stomach	5
3	Stomach blood supply	7
4	Stomach Lymph node stations	8
5	Stomach nerve supply	9
6	Barium meal of normal stomach	9
7	Endoscopic images of fundus and pylorus	10
8	Cells of Gastric pits	11
9	Multiple genetic and epigenetic alterations	13
	during gastric carcinogenesis and	
	lymphomagenesis and the incidence rates in	
	different types of gastric tumors	
10	The multi-step molecular pathogenesis of	15
	gastric cancer	
11	Scheme for the development of gastric	17
	metaplasias in humans after oxyntic atrophy	
	and their relationship to gastric cancer	
12	Stomach cancer risk factors infographics	19
13	Endoscopic images of gastric adenocarcinoma	29
14 Chromoendoscopy of a differentiated		30
	adenocarcinoma	
15	Endoscopic Ultrasound Image from the	31
	Proximal Stomach	
16	Barium x-ray showing gastric cancer	32
17	CT scan image of GC	34
18	PET/CT, PET and CT scan of GC	37
19		
	imaging findings	
20	Routine endoscopy and confocal laser	43
	endomicroscopy images	
21	Representative images of 5-aminolevulinic	45
	acid - photodynamic diagnosis	
22	5-aminolevulinic acid - photodynamic	
	diagnostic imaging of metastatic and non-	
	metastatic lymph nodes	
23	Roux-en-Y Gastro-jejunostomy	54
24	Types of reconstruction after distal	55
	gastrectomy	
25	LN dissection with gastrectomy	57

26	Endoscopic Mucosal Resection	60
27	Radiotherapy and IMRT planning for gastric	65
	cancer	
28	Gross and microscopic (IHC) images of GC	68
29	TN Classification of GC	70
30	Ports placement for laparoscopy-assisted total	72
	gastrectomy	
31	Operative views of laparoscopy-assisted distal	73
	gastrectomy	
32	Laparoscopic Total Gastrectomy	75
33	Pylorus-preserving Gastrectomy	76
34	Locations of the ports in robotic gastrectomy	80
35	Proposed treatment algorithm for a	84
	multimodality approach to gastric cancer	

List of Tables

Table No.	Title	Page No.
1	TNM classification of Gastric cancer	69
2	Staging of Gastric cancer	70
3	Pros and Cons of Pre vs.	85
	Postoperative Radiotherapy	

Abstract

Gastric cancer is the second leading cause of death from malignant disease worldwide and most frequently discovered in advanced stages. Because curative surgery is regarded as the only option for cure, early detection of resectable gastric cancer is extremely important for good patient outcomes. Therefore, noninvasive diagnostic modalities such as evolutionary endoscopy and positron emission tomography are utilized as screening tools for gastric cancer. To date, early gastric cancer is being treated using minimally invasive methods such as endoscopic treatment and laparoscopic surgery, while in advanced cancer it is necessary to consider multimodality treatment including chemotherapy, radiotherapy, and surgery. Because of the results of large clinical trials, surgery with extended lymphadenectomy could not be recommended as a standard therapy for advanced gastric cancer. Recent clinical trials had shown survival benefits of adjuvant chemotherapy after curative resection compared with surgery alone. In addition, recent advances of molecular targeted agents would play an important role as one of the modalities for advanced gastric cancer.

Keywords:

gastric cancer; surgery; chemotherapy; radiotherapy; laparoscopic gastrectomy

Chapter 1 Introduction

Introduction

Gastric cancer (GC) is a major public health issue, and it is the fourth most common cancer and the second leading cause of cancer-related death. However, its incidence rates in different geographical regions are distinctly varied. Etiologically, gastric cancer is associated with *Helicobacter pylori* (*H. pylori*) infection, dietary and lifestyle factors, and genetics. (*Ferlay et al.*, 2010)

It is usually diagnosed at an advanced stage, and, consequently, the prognosis is dismal. Although surgery is the definitive therapy, rates of recurrence are high, creating the need for neoadjuvant or adjuvant therapy. These therapies have improved significantly the 5 year survival of these patients but not all patients benefit equally from these treatment options. The ability to predict patient response to specific therapies would be particularly valuable and would allow for the stratification of patients for personalized treatment strategies, likely with less toxicity. Recent advances have improved our understanding of gastric carcinogenesis with an unprecedented opportunity of developing novel therapeutic strategies. Exploring and validating tissue-based biomarkers are ongoing processes, which will certainly open new avenues for treating and improving the prognosis of patients with GC. (Jemal et al., 2010)

Despite modern advances in diagnostics, surgical techniques, radiation therapy, and chemobiologic therapy, gastric cancer remains a highly fatal disease. Based on SEER data, the 5-year relative survival for gastric cancer (all stages) from 2002–2008 is 27%. The presence of micrometastatic disease, even in apparent early stage disease, contributes to the poor overall survival and the need for improved chemotherapeutics. Most gastric cancers are adenocarcinoma histology (>90%). There has been a migration of gastric cancers over the past century. In the early 1900s most gastric cancers were distal and involved the gastric antrum and body. The incidence of distal gastric cancers has been declining steadily, whereas the incidence of proximal gastric cancers and esophagogastric junction (EGJ) cancers has risen. There has also been a corresponding increase in the number of adenocarcinomas of the distal esophagus. The rate of increase is alarmingly high and should be considered an epidemic. In regards to gastric, EGJ, and distal adenocarcinomas of the esophagus, their natural history, response to treatment, and prognosis are very similar suggesting a shared pathogenesis. Some of the possible causes include infectious pathogens (ie, Helico bacter pylori); Barrett esophagus; and obesity. As the world continues to struggle with the obesity epidemic, there will continue to be an increase in these malignancies. (Wijnhoven et al., 1999)

Surgical resection remains the primary therapy for gastric cancers when the goal of care is curative. More than 50% of gastric cancers have metastasized to regional lymph nodes at the time of surgery. The survival of the remaining patients with potentially curable, non-metastatic disease falls below 50% and 20% when the tumour invades through the involves muscularis propria and regional lymph nodes, respectively, prompting much effort to improve patient outcomes following gastrectomy. Survival rates are correlated with the degree of lymph node involvement. Five-year survival for N0 disease is around 50%, whereas survival for N3 disease is only 10%. The poor survival with advanced disease confirms the importance of developing more systemic therapy, which can be incorporated into multidisciplinary approach to improve outcomes. There is currently no agreed on approach (neoadjuvant vs adjuvant) for locally advanced gastric cancer. This is in part related to the numerous areas of controversy, which have not been addressed in large multicenter randomized controlled phase III trials. Some of the issues have arisen because classifications of gastric cancers and EGJ cancers have changed with time. In addition, this overlap has diluted the data pool because most of the major clinical trials have included a sizable population of distal esophageal, EGJ, and gastric cancers. In the most recent version of TNM staging system (version 7), EGJ and gastric cardia tumors (Siewert III, arise in cardia within 5 cm of EGJ and extend into esophagus or EGJ junction) are classified as esophageal cancer rather than gastric cancer. (Edge et al., 2010)

The publication of two landmark trials in 2001 and 2006 established both post-operative chemo-radiotherapy (CRT) and perioperative chemotherapy (CT) as effective adjuvant treatment options, and both are currently accepted standards of care in the Western world. However, debate continues concerning the applicability of these trials to the Asian population, where there is the highest incidence of gastric cancer. (*Cunningham et al.*, 2010)

Chapter 2 Anatomy

- 1. Stomach parts
- 2. Arterial supply
- 3. Lymphatic drainage
- 4. Nerve supply

Anatomy

The thoracic esophagus enters the abdomen via the esophageal hiatus of the diaphragm at the level of T10. The abdominal portion of the esophagus has a small intra-abdominal length (2-3 cm). The esophagogastric junction (cardia), therefore, lies in the abdomen below the diaphragm to the left of the midline at the T11 level. (*Drake et al.*, 2013)

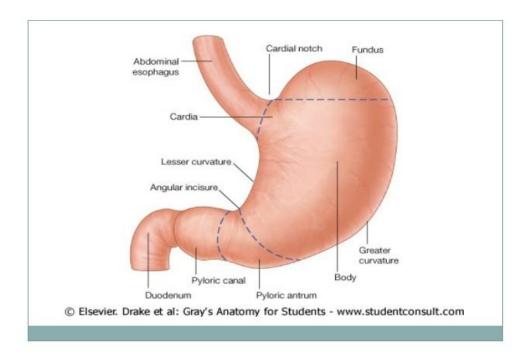


Figure 1: Stomach Anatomy (Drake et al., 2013)

The cardiac notch (incisura cardiaca gastri) is the acute angle between the left border of the abdominal esophagus and the fundus of the stomach, which is the part of stomach above a horizontal line drawn from the cardia. The body (corpus) of the stomach leads to the pyloric antrum (at the incisura angularis). The pyloric antrum narrows toward the right to become the pyloric canal, surrounded by the pyloric sphincter, which joins the duodenum at the L1 level (transpyloric plane) to the right of the midline. (*Agur et al.*, 1999)

The anterior surface of stomach is related to the left lobe (segments II, III and IV) of the liver, the anterior abdominal wall, and the distal transverse colon. The posterior surface of the stomach is related to the left hemidiaphragm, the spleen, the left kidney (and adrenal), and the pancreas (stomach bed). The omental bursa (lesser sac) lies behind the stomach and in front of the pancreas; it communicates with the greater sac (main peritoneal cavity) via the omental (epiploic) foramen (of Winslow) behind the hepatoduodenal ligament (HDL; the free edge of the

lesser omentum). The convex greater curvature of the stomach starts at the left of the cardia and runs from the fundus along the left border of the body of the stomach and the inferior border of the pylorus. The concave lesser curvature starts at the right of the cardia as a continuation of the right border of the abdominal esophagus and runs a short distance along the right border of the body of the stomach and the superior border of the pylorus. The junction of the vertical and horizontal parts of the lesser curvature is called incisura angularis. Lesser curvature is shorter in length than the greater curvature. The stomach and the first part of the duodenum are attached to the liver by the hepatogastric ligament (the left portion of the lesser omentum) containing right and left gastric vessels, to the left hemidiaphragm by the gastrophrenic ligament, to the spleen by the gastrosplenic/gastrolienal ligament containing short gastric vessels, and to the transverse colon by the gastrocolic ligament (part of the greater omentum) containing epiploic (omental) vessels. Few peritoneal bands may be present between the posterior surface of the stomach and the anterior surface of the pancreas. Part of the greater omentum hangs like an apron from the transverse colon, with 4 layers of the peritoneum (often fused): 2 layers go downward from the stomach and then run upward to be attached to the transverse colon. (Gray et al., 2000)

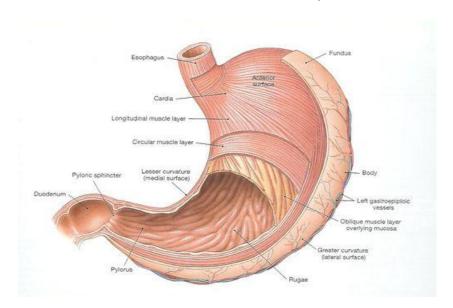


Figure 2: Musclar layers of stomach (Drake et al., 2013)

Blood Supply

The celiac trunk (axis) arises from the anterior surface of the abdominal aorta at the level of L1. It has a short length (about 1 cm) and trifurcates into the common hepatic artery (CHA), the splenic artery, and the left gastric artery (LGA). The LGA runs toward the lesser curvature of the stomach and divides into an ascending branch (supplying the abdominal esophagus) and a descending branch (supplying the stomach).