

"The Application of Nuclear Track Detectors for Neutron Dosimetry"

A thesis presented by:

BASMA ALI EL-BADRY B. Sc. in physics, 2004

For

M. Sc. Degree in Physics

Submitted to

Physics Department
Faculty of Girls for Art, Science and Education, Ain
Shams University

<u>2007</u>

"The Application of Nuclear Track Detectors for Neutron Dosimetry"

A thesis presented by:

BASMA ALI EL-BADRY

B. Sc. in physics, 2004

Supervisors

Prof. Dr. Ahmed Morsy Ahmed Assist. Prof. Dr. Tarek El-Desouky

Department of physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

Department of physics, Faculty of Girls, Ain Shams University, Cairo, Egypt

Dr. Mohammed Fawzi Zaki

Head of Solid State Unit Experimental Nuclear Physic Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

بِسُمِ اللهِ الرَّحْمنِ الرَّحِيمِ

وَيَسْأَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِّي وَيَسْأَلُونَكَ عَنِ أَمْرِ رَبِّي

[الإسراء: 85]

Dedicated

To

My parents (Father and Mother),

My brothers,

My cognates

And

My friends

Abstract

Acknowledgment

I kneel obsequiousness to **ALLAH** thanking **HIM** for showing me the right way, without **HIS** help my efforts would have gone astray. Thanks also for a person I love him very much, the **Prophet Mohammed {God's praise and peace upon},** who demonstrate the way on the strength of his instructions.

I would like to extend a special thanks to, **Prof. Dr. Ahmad Morsy Ahmad**, Department of Physics, Faculty of Girls, Ain Shams University, for his many suggestions and his continuous advises during this research.

Thanks are also to Assist. Prof. Dr. Tarek Mohamed El-Desoky, Department of Physics, Faculty of Girls, Ain Shams University, for his many illuminating discussions through the course of the work

I wish to express my deepest sincerest gratitude to Dr. Mohammed Fawzi Zaki, Department of Experimental Nuclear Physics, Nuclear Research Center, Atomic Energy Authority for his patience, endless help, and support during this research and his guidance through the early years of chaos and confusion.

Great thanks for **Prof. Dr. Amira Zaki**, head of Physics Department for her help and continuous encouragement for me and all young scientists in our department.

Of course, I am grateful to my parents for their patience. Without them this work would never have come into existence.

Finally, I wish to thank the following: Department of Experimental Nuclear Physics, Nuclear Research Center, Atomic Energy Authority, staff members of the Physics Department, Faculty of Girls, Ain Shams University; specially, my friends (for all the good and bad times we had together); and my brothers; my family.

CONTENTS

CONTENTS

Subject	Page
Published Articles	_
List of Figures	VII
List of Tables	X
Abstract	XI
Chapter (I)	
1. Introduction	1
Chapter (II)	
2. Theory and Previous Works	8
2.1 Introduction	8
2.2 Types of common radiation	8
2.2.1 Gamma rays	8
2.2.2 Betas	
2.2.3 Alphas	9
2.2.4 X-rays	9
2.2.5 Neutrons.	9
2.3 Classification of Neutrons as to Energy	
2.3.1. Slow Neutrons.	
2.3.1.1 "Cold" Neutrons	
2.3.1.2 Thermal Neutrons.	
2.3.1.3 Epithermal Neutrons	
2.3.1.4 Resonance Neutrons	
2.3.2. Intermediate Neutrons	
2.3.3. Fast Neutrons	
2.4 Neutron sources	
2.4.1 Spontaneous Fission	
2.4.2 Alpha Reaction	
2.4.3 Sealed Tube Neutron Generator	
2.4.4 Photofission	
2.4.5 Photoneutron	
2.4.6 Plasma Focus and Plasma Pinch	
2.4.7 Nuclear fission.	
2.4.8 A spallation source	
2.5 Interaction of neutron with matter	
2.6 Interactions of neutron with plastic	
2.7 Dosimetric Quantities	18

<u>CONTENTS</u> <u>II</u>

2.8 Radiation Weighting Factor (RWF)	20
2.9 Active and Passive Radiation Detectors	23
2.9.1 Introduction	23
2.9.2 Detectors Based on the Ionization of Gas	24
2.9.2.1 Ionization chamber	24
2.9.2.2 Proportional counter	25
2.9.2.3 Geiger-Müller counter	26
2.9.3 Solid-State Detectors	26
2.9.4 Scintillation detectors	27
2.9.5 Track Detectors	. 28
2.9.6 Bubble and Cloud Chambers	28
2.9.7 Personal monitoring devices	29
2.9.7.1 Thermoluminescence detectors (TLD)	29
2.9.7.2 Film badge	
2.9.8 Nuclear emulsions	31
2.10 Solid State Nuclear Track Detectors	
2.10.1 History of Solid State Nuclear Track Detectors	. 32
2.10.2 Basics	34
2.10.3 CR-39 characteristic.	37
2.10.4 Stopping power, restricted energy loss	41
2.11 Track Etching: Methodology and Geometry	
2.11.1 Track etching process	
2.11.2 Geometry of track development	46
2.11.2.1 Geometry of track development and basic terms	46
2.11.2.2 Geometry of track development for constant V_t	48
2.11.2.2.1 Constant V _t and normal incidence	
2.11.2.2.2 Constant V_t and oblique incidence	
2.12 Bulk etch rate and track etch rate	
2.12.1 Bulk etch rate V _b	
2.12.1.1 Indirect determination of V _b	54
2.12.1.2 Determination of V _b from the diameter of tracks of fission	
fragments	54
	55
2.12.1.4 Determination of V_b from the change in detector thickness	
2.12.1.5 Determination of V _b from spectroscopy methods	56
2.12.1.6 Determination of V_b from the color of the LR detector	
2.12.1.7 Determination of V_b from the critical angle	
2.12.2 Track etch rate (V _t function)	
2.13 Previous works	58

<u>CONTENTS</u> <u>III</u>

Chapter (III)

3. Experimental procedures	75
3.1 Equipment and materials	75
3.1.1 Plastic detector material (CR-39)	75
3.1.2 Chemical etching solution	75
3.1.3 Track counting system	76
3.1.4 Sensitive digital micrometer and electronic balance	. 76
3.2 Determination the response of CR-39 to fast neutrons	. 76
3.2.1 Sample preparation	76
3.2.2 Californium-252 neutron source description	77
3.2.3 Chemical etching process and reading	79
3.2.4 The current used method for V _b measurement	80
3.3 A new method to investigate the unknown dose of fast neutron	18
using the UV-VIS spectra of CR-39	81
3.3.1 Sample preparation	
3.4 Response study of CR-39 with different configurations	84
3.4.1 Sample preparation	
3.4.2 Neutron irradiation	85
3.4.3 Processing and reading	. 85
3.4.4 Measurement Evaluation	87
3.5 The effect of radiator thickness on CR-39 detection	
efficiency	88
3.5.1 Sample preparation	88
3.5.2 Processing and reading	88
3.6 Another novel approach for counting recoil tracks for neutron	n
dosimeter application	89
3.6.1 Sample preparation	93
Chapter (IV)	
4. Results and Discussion	95
4.1 The effect of the etching time	95
4.2 The effect of neutron irradiation time	
4.3 The effect of neutron doses (neutron fluence)	
4.4 Interpretation of the results of the UV-visible spectroscopy	
4.4.1 Dependence of energy band gap on optical absorbance	
4.5 The effect of neutron equivalent dose on absorbance	
4.6 Effect of different radiator on the response of CR-39	
4.7 The effect of radiator thickness on CR-39 registration of fast	
neutron	.109

<u>CONTENTS</u> <u>IV</u>

4.8 Counting recoil proton using coincidence track dosimeter application	
Chapter (V)	
Conclusions	114
References	116
Arabic Summary	

List of Tables

List of Tables X

List of Tables

Table	Captions	page
2.1	Radiological Units.	19
2.2	Replaced Units by Radiation Communities.	20
2.3	Values for Radiation. Weighting factors Recommended in ICRP Puublication 60 [26].	21
2.4	Tissue Weighting Factors for Individual Tissues and Organs.	22
2.5	History of Nuclear Track Detection [33].	32
2.6	The following table summarizes the main properties of CR-39 sheets compared to the most popular transparent materials [37].	39
2.7	Etchants for some SSNTDs [19].	46
4.1	Response of the CR-39 dosimeter irradiated with ²⁵² Cf neutron source (average energy of 2.3 MeV) etched in 6.25 N NaOH at 70 °C for 10 h etching time.	100
4.2	The variation of band gap energy and Urbach's energy in neutron irradiated CR-39, along with the number of carbon atoms (N) per conjugated length.	103
4.3	Dosimeter response to ²⁴¹ Am-Be.	107
4.4	Response and background values for all the three methods of measurement.	113

List of Figures

<u>List of Figures</u> VII

List of Figures

Figure	Captions	Page
1.1	Absorbed dose in tissue irradiation by neutrons.	2
2.1	The structure of neutron.	10
2.2	Feynman diagram.	10
2.3	Dose-effect curves. Curve (a) represents the deterministic effect and curve (b) represents stochastic effect.	19
2.4	Dose-density curve.	31
2.5	The atomic character of particle tracks in (a) crystal and (b) polymer.	35
2.6	Geometry of the track development. The incident angle is normal with respect to the detector surface, and V_t is constant.	47
2.7	Three phases in the track development.	50
2.8	Phases of track development for oblique incidence.	52
3.1	Spectrum of fast neutrons emitted directly from californium-252 neutron source.	77
3.2	Vertical cross section of movable ²⁵² Cf irradiation cell.	79
3.3	Horizontal cross section of movable ²⁵² Cf irradiation cell.	79
3.4	A schematic diagram showing the experimental determination of bulk and track etch rates.	81
3.5	UV-VIS 8500 double beam spectrophotometer.	84
3.6	Schematic configuration of the three dosemeters.	85

<u>List of Figures</u> VIII

3.7	Schematic diagram showing the experimental arrangement and CR-39 irradiation.	88
3.8	Different types of coincident events.	90
3.9	Two detector foils in contact, showing marked recoil nuclei tracks. After etching tracks were counted on the surfaces denoted by A' and B'. The detector layer removed by chemical etching is denoted by h.	92
3.10	Schematic showing the measurement of density of coincidence track through pair of CR-39.	94
4.1	The variation of track density as a function of etching time for neutron-irradiated CR-39 detector at different irradiation time.	95
4.2	Photomicrograph of recoil tracks in CR-39 plastic detector irradiated with ²⁵² Cf neutron source for 24 h, etched in 6.25 N NaOH for etching time 2, 4, 6, 8 and 10 h.	96
4.3	The dependence of the track density on the irradiation time.	97
4.4	Photomicrograph of recoil tracks in CR-39 plastic detector irradiated with ²⁵² Cf neutron source for 24, 48, 72, 96 and 120 h, etched in 6.25 N NaOH for etching time 4h.	98
4.5	The variation of track density as a function of neutron dose (neutron fluence) for CR-39 samples etched at 10h. The strait line is linear fit to the data points is given by $Y = a + b X$ where $= 5845.4 \pm 602.5$ and $b = 1.21 \times 10^{-4} \pm 5.61 \times 10^{-6}$.	99
4.6	UV-visible spectra of neutron-irradiated CR-39.	103
4.7	Representation of Tauc's relation to derive the indirect optical gap $E_{\rm g}$ from UV-VIS spectrum data for neutron irradiated CR-39.	104