Perioperative management of patient with pacemaker undergoing non cardiac surgery

Essay

Submitted for partial fulfillment of Master degree in Intensive Care

By

Amira Reda Abo Deif

M.B.B.Ch
Faculty of medicine-Menofia university

Under supervision of

Prof. Dr. Mohammed Ali Zaghloul

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. Mohammed Mohammed Nabil Elshafi

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Hany Victor Zaki

Lecturer of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2015

سورة البقرة الآية: ٣٢

First of all, to Allah the most merciful for guiding me through and giving me the strength to complete this work the way it is.

I would like to express my deeply felt gratitude to **Prof. Dr. Mohammed Ali Zaghloul,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for giving me the chance of working under his supervision. I appreciated his constant encouragement.

Many Thanks for **Prof. Dr. Mohammed Mohammed Nabil Elshafi,** Professor of Anaesthiology and Intensive
Care Medicine and Pain Management, Faculty of
Medicine, Ain Shams University, for her kind supervision,
and great help.

Great appreciation and gratitude to **Dr. Hany Victor Zaki**, Lecturer of Anaesthiology and Intensive Care
Medicine and Pain Management, Faculty of Medicine, Ain
Shams University for her great efforts, valuable guidance
and great concern that really supported the work.

Amira Reda Abo Deif

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	
List of Figures	
• Introduction	
Aim of the work	3
Review of literature	
- Chapter (1): Electrophysiological	Properteries of
The Heart	4
- Chapter (2): Pacemaker	26
- Chapter (3): Perioperative manag	gement of patient
with pacemaker under	going non cardiac
surgery	67
• Summary	
References	
Arabic summery	

List of Abbreviations

4-AP : 4-aminopyridin

ACC: American College of Cardiology

ACLS: Advanced Cardiac Life Support

AF : Atrial fibrillation

AHA : American Heart Association

ANS : Autonomic nervous system

APD : Action Potential Duration

ARCO: Atlantic Richfield Company

A-V : Atrioventricular

AVN : Atrioventricular node

BPEG: British Pacing and Electrophysiology Group

bpm: : beat per minute

Ca²⁺ : Calcium

cAMP : Cyclic Adenosine Monophosphate

CIED : Cardiovascular implantable electronic

devices

<u>Cl'</u> : Chloride

CRMD: Cardiac Rhythm Management Devices

CRT : Cardiac resynchronization therapy

DAD : Delayed afterdepolarization

DC : Direct current

EAD : Early afterdepolarization

E List of Abbreviations &

ECG: Electrocardiogram

ECT : electroconvulsive therapy

ELT : Endless-loop tachycardia

EMGs: Electromyelograms

EMI : Electromagnetic Interference

ERI : elective replacement indicator

ESWL : Extracorporeal shock wave lithotripsy

GDMT : Guideline-directed medical therapy

HB : Bundle of His

HF: Heart failure

HOCM: Hyperobstructive cardiomyopathy

ICDs : Intensified follow-up required

IFI : Intrinsic heart rate

IHR : Inferior vena cava

IVC : Potassium

K⁺ : Kilogram

Kg: Left atrium

LA : Left bundle branch

LBB: Left bundle branch block

LBBB : Left flank

LF : Left ventricle

LV : Left ventricular ejection fraction

LVEF : Left ventricular free wall

LVW : Maximum

E List of Abbreviations &

: Intensified follow-up required

Mg : Milligram

MI : Myocardial infarction

min : Minute

Mm: Millimeter

mmol/L : Millimole/ liter

MRI : Magnetic resonance imaging

mV : Millivolt

MV: Minute ventilation

<u>Na</u>⁺ : Sodium

NASPE: North American Society of Pacing and

Electrophysiology

NYHA: New York Heart Association

P : Posteroinferior fascicle of the left bundle

PA : Pulmonary artery

PF : Purkinje fiber

PMT: PACEMAKER-mediated tachycardia

RA : Right atrium

RBB : Right bundle branc

RBBB : Right bundle branc block

RCA: Right coronary artery

RF : Radio frequency

RFA: Radiofrequency ablation

RV : Right ventricle

🕏 List of Abbreviations 🗷

SA node : Sinoatrial node

sec : Second

SSS : Sick sinus syndrome

SVC : Superior vena cava

SVT : Supraventricular tachycardia

TENS: Transcutaneous electrical nerve stimulation

TUNA: Transurethral needle ablation

TURP: Transurethral resection of the prostate

USA : United States of America

VA : Ventricloarterial

VF : ventricular fibrillation

VT : ventricular tachycardia

List of Tables

Table No	Title	Page
Table (1)	Intra- and extracellular ion concentrations	16
Table (2)	The NBG Code NASPE/BPEG Generic	31
Table (3)	ACC/AHA/HRS: Indications for permanent	34
	pacing in sinus node dysfunction	
Table (4)	ACC/AHA/HRS guideline summary:	35
	Indications for permanent pacing in	
	acquired atrioventricular (AV) block in	
	adults	
Table (5)	ACC/AHA/HRS guideline summary:	37
	Indications for permanent pacing in chronic	
	bifascicular block	
Table (6)	ACC/AHA/HRS guideline summary:	39
	Permanent pacing after the acute phase of	
	myocardial infarction (MI)	
Table (7)	ACC/AHA/HRS guideline summary:	40
	Permanent pacing in hypersensitive carotid	
	sinus syndrome and neurocardiogenic	
	syncope	
Table (8)	ACC/AHA/HRS: Pacing indications for	41
	hypertrophic cardiomy opathy	
Table (9)	Recommendations for Permanent	42
	Pacemakers That Automatically Detect and	
	Pace to Terminate Tachycardias	
Table (10)	Recommendations for Pacing After Cardiac	43
	Transplantation	

🕏 List of Tables 🗷

Table No	Title	Page
Table (11)	Recommendations for Pacing to Prevent	44
	Tachycardia	
Table (12)	Recommendations for Cardiac	45
	Resynchronization Therapy	
Table (13)	Recommendations for Permanent Pacing in	46
	Children, Adolescents, and Patients with	
	Congenital Heart Disease	

List of Figures

Figure No	Title	Page	
Fig. (1)	Anatomy of the heart	4	
Fig. (2)	Anatomy of the heart		
Fig. (3)	Schematic illustration of the cardiac	7	
	conduction system		
Fig. (4)	Schematic representation of the trifascicular	10	
	bundle branch system.		
Fig. (5)	Structural organization of the His-Purkinje	11	
	system in mouse heart. Expression of a		
	green fluorescent protein was specifically		
	targeted to cells of the His-Purkinje system		
	in mice.		
Fig. (6)	Standard model of cardiac action potential	16	
Fig. (7)	The cardiac pacemaker cell action potential	17	
Fig. (8)	First pacemaker	27	
Fig. (9)	Leadless Pacemaker		
Fig. (10)	Pacemaker components	30	

Introduction

A pacemaker (or artificial pacemaker, so as not to be confused with the heart's natural pacemaker) is a medical device that uses electrical impulses, delivered by electrodes contracting the heart muscles, to regulate the beating of the heart. The primary purpose of a pacemaker is to maintain an adequate heart rate, either because the heart's natural pacemaker is not fast enough, or there is a block in the heart's electrical conduction system. Modern pacemakers are externally programmable and allow the selection of the optimum pacing modes for individual patients. Some combine a pacemaker and defibrillator in a single implantable device. Others have multiple electrodes stimulating differing positions within the heart to improve synchronization of the ventricles of the heart (McWilliam, 2007).

The first pacemaker was invented by electrical engineer John Hopps and Drs. Bigelow and John Callaghan at the Banting William Institute, University of Toronto, was developed in 1950 (*John*, 2010). In 1958, Senning and Elmqvist performed the first implantation of an electronic pacemaker (*Si Larrson*, 2003). Since then, pacemaker technology has improved enormously to include inhibition by spontaneous beats, rate responsiveness to exercise, dual-chamber pacing, and improvement in adaptability such as hysteresis. Pacemaker software has benefitted from advances in microprocessor technology, and the devices are now controlled by embedded microcomputers. Once reserved for the treatment of intractable recurrent bradycardia and blocks, pacemakers are now placed prophylactically to prevent syncope and bradycardia in at-risk

patients (*Mirowski*, 1980). Nowdays pacemakers are being used with greater frequency that an estimated 4 million people worldwide live with a pacemaker. Annually, 200 000 pacemakers are implanted in the United States. As roughly 10% of the population undergo a surgical procedure each year (*Wood and Ellenbogen*, 2002).

The effect of surgery on pacemaker is unclear. The most common perioperative problem is the presence of major electromagnetic interference, in particular the use of the electrical cautery (*Domino*, 1983).

Pacemaker is constantly increasing in complexity and management strategies so the perioperative period for patients with pacemakers poses unique challenges to ensure a high degree of patient safety and identifies the interactions that may occur during anesthesia and surgery to help prevent device-related complications (*Hayes and Zipes*, 2001).

Aim of the Work

The aim of this work is to facilitate safe and effective perioperative management of the patient with a pacemaker and reduce the incidence of adverse outcomes.