

Ain Shams University Women's College for Arts, Science & Education Department of Zoology

Comparative study between oxygen therapy and rutin as an antioxidant in hyperlipidemic rats

A thesis

Submitted for fulfillment of the degree of Doctor Philosophy in Zoology

By

Hanaa Khairy Mohamed

AssistantLecturer at Zoology Department, Women's College, Ain Shams University

Board of Scientific Supervision Prof.Dr Sanaa M. Rifaat Wahba

Professor of Histology & Histochemistry
Zoology Department,
Women's College for Arts, science & Education,
Ain Shams University

Dr.

Walaa Ahmed Moustafa

Assist.Prof. of Physiology,
Zoology Department
Women's College for Arts, science & Education,
Ain Shams University

First and foremost, I feel always indebted to ALLAH, the most kind and most merciful.

No, words can be sufficient to express my deepest gratitude to **Prof. Dr. Sanaa M. Rifaat Wahba**, Professor of Histology and Histochemistry, Department of Zoology, Women's College, Ain Shams University, for her close supervision and continuous assistance during the investigation. To her I owe a great deal for her sincere guidance. I will never forget her unlimited help.

I am greatly obliged to **Dr. Walaa Ahmed Moustafa**, Assistant Professor of Physiology, Department of Zoology, Women's College, Ain Shams University. To her I am greatly indebted for suggesting and planning the subject, valuable advice, immeasurable time given and for reading and criticizing the manuscript.

Finally, I whould like to offer a word of thanks to all my colleagues and the members of Zoology Department for their cooperations.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Dedication

TO my Husband,

TO my Father,

TO my Mother,

TO my brothers,

And

TO my sister,

Wishing them all the best.

QUALIFICATIONS

Name : Hanaa Khairy Mohamed

Scientific Degree : M.Sc

Department : Zoology

College : Women College for Arts,

Science & Education

University : Ain Shams University

Job : Assistant Lecturer in

Zoology Department, Women College for Arts, Science &

Education

Graduation year :2006

Courses

Courses studied by Candidate in Partial Fulfillment of the Requirement for the Degree of M.Sc.

- 1. Physiology
- 2. Histology
- 3. Ecology
- 4. Histopathology
- 5. Statistical analysis
- 6. English language
- 7. Computer science

Ain Shams University Women's College for Arts, Science & Education Zoology Department

APPROVAL SHEET

Name: Hanaa Khairy Mohamed

Title : Comparative study between oxygen therapy

and rutin as an antioxidant in hyperlipidemic rat

Board of Scientific Supervision

Prof. Dr. Sanaa M. Rifaat Wahba

Prof .of Histology & Histochemistry
Department of Zoology,
Women College for Arts, Science & Education,
Ain Shams University

Dr. Walaa Ahmed Moustafa

Assist.Prof.of Physiology,
Department of Zoology,
Women's College for Arts,Science & Education
AinShams University

Abstract

The present study is an attempt to investigate the complications of hyperlipidemia on some physiological parameters and histological profiles on the liver tissue of male albino rats.

The work also evaluates the therapeutic role of oxygen therapy or rutin on hyperlipidemic rats to minimize hazardous effects of hyperlipidemia.

Results were obtained from the treated experimental animal groups and compared with the corresponding normal control rat group.

The present findings were further discussed in view of relevant available literature in similar fields of studies.

The following parameters were estimated: -Hormonal assays, lipid profile, free fatty acids, phospholipids, total antioxidant capacity and lipid peroxidation.

Liver of albino rats was chosen for the histological and histochemical studies to elucidate the impact of hyperlipidemia on liver tissue and the ameliorating effects of oxygen therapy and rutin.

In the light of the obtained results, conclusions were deducted and suggestions for further studies were introduced.

CONTENTS

LIST OF TABLES	i
LIST OF FIGURES	iii
LIST OF ABBREVIATION	ix
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	5
A- Obesity	5
1- Classification of obesity	6
2- Causes of obesity	7
3-Pahophysiology of obesity	9
B- High fat diet (HFD)	10
1-Effect of HFD on morphological and liver	
histopathological parameters	13
2-Effect of HFD on biochemical parameters	14
a-Effect of high fat diet on serum FT ₃ &FT ₄ concentration	14
b-Effect of high fat diet on serum resistin concentration	16
c-Effect of high fat diet on serum leptin concentration	18
d-Effect of high fat diet on the lipid profile	19
e-Effect of high fat diet on the serum free acids concentration	20
f-Effect of high fat diet on hepatic phospholipids	
concentration	23
g-Effect of high fat diet on hepatic total antioxidant capacity concentration (TAC)	24
h-Effect of high fat diet on hepatic glutathione (GSH)	25

i-Effect of high fat diet on lipid peroxidation malondialdhyde	
(MDA)	26
3-Effect of high fat diet on molecular parameters	
a- Detection of DNA damage by the comet assay	
C-Free radicals and antioxidants	28
1-Free radicals	28
a-Biology and biochemistry of oxygen free radicals	28
Y -	29
· ·	30
2-Antioxidants	32
Rutin as an antioxidant	33
a-Rutin and obesity	34
b-Effect of Rutin on liver histopathology	35
D-Oxygen Therapy	
1-Methods of oxygen Therapy	37
a-Hyperbaric Oxygen Therapy	37
b -Ozone Therapy	38
2-Ozone as an antioxidant	
a-Mechanism of ozone therapy	
b-Ozone and free radicals	42
MATERIAL AND METHODS	44
Material	44
A-Experimental Animals	44
B-Experimental Drugs and Antioxidants	
1- High fat	45
2-Rutin	46
3-Ozonized water	47

Methods	47
A-Housing of Experimental Animals	47
B- Drug and Antioxidant Administration	
C- Anthropometric Methods	
1-Determination of body weight (b.wt)	48
D-Tissue Sampling and Histological and Histochemical	48
Studies	
E-Biochemical Methods	49
1- Hormonal profile	49
a-Determination of serum free triiodothyronine(FT ₃)	49
b-Determination of serum free thyroxine(FT ₄)	50
c-Determination of serum resistin levels	51
d-Determination of serum leptin levels	52
2 -Lipid profile	54
a-Determination of serum cholesterol level	54
b-Determination of serum triglyceride (TG) level	55
c-Determination of serum high density lipoprotein (HDL) level	
d-Determination of serum low density lipoprotein (LDL) level	
e-Determination of serum very low density lipoprotein	59
(VLDL) Level.	
3-Determination of serum free fatty acids	59
4-Determination of hepatic phospholipids	62
5-Determination of hepatic total antioxidant capcitity (TAC)	63
6-Determination of hepatic glutathione (GSH)	64

7- Determination of lipid peroxidation malondialdhyde	66
(MDA) F-DNA analysis, single-cell gel electrophoresis (Comet	
assay)	0/
G -Statistical Analysis	68
Experimental design	69
RESULTS	72
A-Morphological studies	72
1-Determination of body weight	72
B-Histological studies	75
C-Histochemical studies	97
D-Biochemical studies	115
1-Hormonal profile	115
a-Serum free triiodothyronine (FT ₃) level	115
b-Serum free triiodothyronine (FT ₄) level	118
c-Serum leptin level.	121
d-Serum resistin level	124
2-Lipid profile	127
a-Serum cholesterol level	127
b-Serum triglycerides level	130
c-Serum high density lipoprotein-cholesterol(HDL) level	133
d- Serum low density lipoprotein-cholesterol (LDL) level	136
e- Serum very low density lipoprotein- cholesterol (VLDL) level.	139
3- Serum free fatty acids (FFAs)	142
4-Hepatic phospholipids level	145
5-Hepatic total antioxidant capacity(TAC)Level	148

6-Hepatic reduced glutathione (GSH) level	151
7-Hepatic lipid peroxidation malondialdhyde level	154
E-DNA analysis, single-cell gel electrophoresis (Comet assay)	157
DISCUSSION AND CONCLUSION	164
SUMMARY	188
REFERENCES	193

LIST OF TABLES

Table (1):	Composition of the normal and fat diets.	45
Table (2):	Experimental design and distribution.	71
Table (3):	Amelioration effect of rutin and ozonized water on body weight in obese male rats at various time intervals.	73
Table (4):	Amelioration effect of rutin and ozonized water on the serum free triiodothyronine (FT_3) in obese male rats at various time intervals.	116
Table (5):	Amelioration effect of rutin and ozonized water on the serum free thyroxine (FT ₄) in obese male rats at various time intervals.	119
Table (6):	Amelioration effect of rutin and ozonized water on the serum leptin in obese male rats at various time intervals.	122
Table (7):	Amelioration effect of rutin and ozonized water on the serum resistin in obese male rats at various time intervals.	125
Table (8):	Amelioration effect of rutin and ozonized water on the serum cholesterol in obese male rats at various time intervals.	128
Table (9):	Amelioration effect of rutin and ozonized water on the serum triglyceride in obese male rats at various time intervals.	131
Table (10):	Amelioration effect of rutin and ozonized water on the serum high density lipoprotein-cholesterol (HDL) in obese male rats at various time intervals.	134

Table (11):	Amelioration effect of rutin and ozonized	137
	water on the serum low density lipoprotein-	
	cholesterol (LDL)(mg/dl) in obese male rats	
	at various time intervals.	
Table(12):	Amelioration effect of rutin and ozonized	140
	water on the serum very low density	
	lipoprotein-cholesterol (VLDL) in obese	
	male rats at various time intervals.	
Table(13):	Amelioration effect of rutin and ozonized	143
	water on the serum free fatty acids(FFAs)	
	in obese male rats at various time intervals	
Table (14):	Amelioration effect of rutin and ozonized	146
	water on hepatic phospholipids in obese	
	male rats at various time intervals.	
Table(15):	Amelioration effect of rutin and ozonized	149
	water on hepatic total antioxidant capacity	
	(TAC) in obese male rats at various time	
	intervals non-diabetic and diabetic rats at	
	various time intervals.	
Table(16):	Amelioration effect of rutin and ozonized	152
	water on hepatic glutathione (GSH) in obese	
	male rats at various time intervals.	
Table(17):	Amelioration effect of rutin and ozonized	155
	water on hepatic lipid peroxidation	
	malondialdhyde (MDA) in obese male rats	
	at various time intervals.	
Table (18):	Comet assay parameters by image analysis	159
	of cells isolated from liver in control and	
	obesity group.	

LIST OF FIGURES

		rage No.
Fig. (1):	Energy balance and etiology of obesity.	8
Fig. (2):	Physiologic regulation and metabolic effects of leptin and adiponectin.	12
Fig. (3):	Histogram showing chemical structure of rutin.	46
Fig. (4):	Amelioration effect of rutin and ozonized water on body weight in obese male rats at various time intervals.	74
Fig. (5):	Section of liver from control rat after 60 th days showing normal architecture with radially arranged hepatocytes around to centrilobular vein (CV).	78
Fig. (6):	Section of liver from control rat trated with rutin after 60 th day to show general structure.	78
Fig. (7):	Section of liver from control rat trated with ozonized water after 60 th day to show normal architecture pattern of hepatic cells.	80
Fig. (8):	Liver section from obesity rats at zero time showing inflammatory cells infiltration detected in the portal area and in between the hepatocytes with hemorrhagic change.	82
Fig. (9):	Liver section from obesity rats at zero time showing necrotic cells; Kupffer cells proliferation and infiltrative inflammatory monocytes in between group after 60 th day.	82