

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Multiple Distributed Generators for Enhancement of Voltage Stability in Distribution Systems

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Bahaa Saad Mahmoud Bassuonie

B.Sc. in Electrical Power Engineering Department of Electrical Power and Machines El-Shorouk Academy

Under Supervision of:

Prof. Dr. Ahmed Rizk Abul'Wafa

Faculty of Engineering -Ain Shams University

Assoc. Prof. Dr. Aboul'Fotouh A. Mohamed High Institute for Engineering, El-Shorouk Academy

> Cairo - Egypt 2015

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Multiple Distributed Generators for Enhancement of Voltage Stability in Distribution Systems

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Bahaa Saad Mahmoud Bassuonie

B.Sc. in electrical power engineering

Examination Committee

Title, Name and Affiliation

Prof. Dr. Adel Ali Mohamed Abou El-Ela

Electrical Engineering Dept.

Faculty of Engineering - Shebin El-Kom

Menoufiya University

Prof. Dr. Elsayed A. Mohamed

Electrical Power & Machines Engineering Dept.

Faculty of Engineering - Abbasya,

Ain Shams University

Prof. Dr. Ahmed Rizk Abul'Wafa

Electrical Power & Machines Engineering Dept

Faculty of Engineering - Abbasya,

Ain Shams University

Date:

11/11/2015

<u>Signature</u>

EA Mohard

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Multiple Distributed Generators for Enhancement of Voltage Stability in Distribution Systems

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Bahaa Saad Mahmoud Bassuonie

B.Sc. in electrical power engineering

Supervision Committee

Title, Name and Affiliation

Prof. Dr. Ahmed Rizk Abul'Wafa

Electrical Power & Machines Engineering Dept

Faculty of Engineering - Abbasya,

Ain Shams University

Assoc. Prof. Dr. Aboul'Fotoh A. Mohamed

Electrical Power & Machines Engineering Dept. High Institute for Engineering - El-Shorouk city

El-Shorouk Academy

Date:

11/11/2015

Signature

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirement for the M.Sc. degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the Electrical Power and machine department, Ain-Shams University. No Part of this thesis has been submitted for a degree or a qualification at other university or institute.

Name: Bahaa Saad Mahmoud Bassuonie

Signature: Bakaa Saad

<u>Date:</u> 11 / 11 / 2015

AKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

Thanks must go to Allah the creator of this universe who ordered us to study and explore his creations in order to know him better. However, as I come to understand more, I find that there is so much more knowledge to absorb and to get to grips.

I am honored to record my deepest sense of gratitude and thanks to **Professor Dr. Ahmed R. Aboul'Wafa**, for the efforts he had exerted to make it possible for me to make this research reality and for the help he gave, the many advices and the patience and the understanding he has shown throughout this work.

Thanks deeply grateful to *Professor Dr. Aboul'Fotouh A. Mohamed*, for the time and great help enlightened many points and efforts he had spent helping me during developing this thesis.

I would like to thank all staff members of faculty of engineering – Ain Shams University that will grant me the degree of Master of Science in Electrical Engineering

There are no enough words to thank **my parents** and **my brothers** for the good family atmosphere, which helped in completing this thesis and encouragement during all time of hard work to complete it.

Bahaa Saad

ABSTRACT

Nowadays, power systems obliged to operate near to their stability limits due to the continually increasing in power demand.

Power system operation close to its stability limits may lead to system instability and spread of the partial blackout. The integration of Distributed Generators (DGs) into the distribution power system is a promising option to improve the overall system performance by enhancing the system voltage stability and reduces the system power loss to mitigate the challenge of the system instability problem. However, DG units have to be optimally placed and sized, to achieve a positive impacts on the power system.

In this thesis, two algorithms are proposed for finding the optimal location and size of multiple DG units in the Radial Distribution Networks (RDNs) to improve the overall system performance. The first algorithm is an extended improved analytical method (**EX.IA**). And the second method is based on the new binary particle swarm optimization (**NBPSO**) as an intelligent method.

The proposed strategy implies the following main tasks: Voltage stability analysis to evaluate the voltage stability index (Lj) for each node, and the maximum value between (Lj) values will indicate the stability index of the system. Load flow analysis for computing node voltage requires for computing the (Lj) at the node j, and voltage stability enhancement to mitigate the voltage stability problem by applying the proposed solutions.

Voltage stability index calculation depends on the feasibility of power flow equations for each node. The indicator L is a quantitative measure for estimating the voltage stability margin for the current operating point. The value of indicator L is between 0 (no load) and 1 (voltage

collapse). The lower value of indicator L means a larger voltage stability margin. Newton Raphson load flow algorithm is chosen to transact with the power flow analysis in RDNs.

The objective function of optimal allocation DGs in RDNs is to improve the system voltage stability and minimize system losses at minimum cost. Based on obtained results, it can assure that the proposed methods allocated the DG units to improve the system performance, and it is observed that the improvement of system voltage stability index is directly proportional to the maximizing of system loss reduction till reaching a specific point then the relation becomes inversely proportional; this specific point is depending on the DG unit size.

The proposed strategies are evaluated by being implemented on 33-node and 85-node IEEE test systems. The obtained results are presented and discussed. All the required software is developed using MATLAB m-files as a platform.

Table of contents

AKNOWLEDGMENT	i
ABSTRACT	ii
Table of contens	iv
List of Figures	X
List of tables	xii
List of Symbols	xiii
List of Abbreviations	XV
Chapter One: Introduction	1
1.1 General	1
1.2 Distribution System	3
1.3 Voltage Stability Problem Statement	7
1.4 Thesis Objectives and Scope of the Thesis W	/ork8
1.4.1 Thesis Objectives	8
1.4.2 Scope of the Thesis Work	9
1.5 Organization of the Thesis Work	9
Chapter Two: Distribution Generation	12
2.1 Introduction	12
2.2 Distribution Generation	12
2.2.1 Definitions of DG	12
2.2.2 DG Ratings	13
2.3 Distributed Generation Technology	15
2.3.1 Wind Turbine	15
2.3.2 Micro-Turbine	16
2.3.3 Photovoltaic	18
2.3.4 Fuel Cells	19
2.4 DG Applications	21
2.5 Impact of DG on Distribution Networks	24

Contents

		2.5.1	Impact on Voltage Profiles and Voltage Stability	24
		2.5.2	Impact on Losses	24
	2.6	DG Be	enefits	25
		2.6.1	Technical Benefits	25
		2.6.2	Economical Benefits	25
		2.6.3	Environmental Benefits	26
		2.6.4	Supply Security Benefits	27
	2.7	Types	of DG Units	27
	2.8	Alloca	tion (placement and sizing) of DG Units	28
		2.8.1	Different Objectives of DG Allocation	28
		2.8.2	Different Methodologies Used for DG Allocation	29
	2.9	Summ	ary	31
Cha	apte	r Thre	e: Load Flow	32
	3.1	Genera	al	32
	3.2	Review	w of Literature	33
	3.3	Determ	ninistic Load Flow Methods	33
		3.3.1	Backward/forward sweep methods	33
		3.3.2	Newton-Raphson Type Methods	34
		3.3.3	Gauss-Seidel or Fixed-Point Type Methods	35
	3.4	Probab	pilistic Load Flow Methods	35
		3.4.1	Numerical Solution Methods	35
		3.4.2	Analytical Solution Methods	36
	3.5	Misce	llaneous Power Flow Methods	36
		3.5.1	Direct Method (BIBC/BCBV matrix method)	36
		3.5.2	Loop Impedance Matrix Method	37
	3.6	Newto	n-Raphson Load Flow Analysis	37
	3.7	Simula	ation Results	37
		3.7.1	33-Node RDN	38
		3.7.2	Comparisons with Other Published Results	39
	3.8	Summ	ary	41

Chapter Four: Voltage Stability	42
4.1 Introduction to Voltage Stability	42
4.2 Voltage Stability Definitions	43
4.3 Classification of Voltage Stability	44
4.3.1 Short-term voltage stability	44
4.3.2 Long-Term Voltage Stability	44
4.3.3 Small-Disturbance Voltage Stability	45
4.3.4 Large-Disturbance Voltage Stability	45
4.4 Voltage Stability Analysis	45
4.4.1 Power-Flow Analysis	45
4.4.2 Voltage Stability Indices	46
4.4.2.1 Jacobian Matrix-Based VSI	47
4.4.2.2 System Variables-Based VSI	48
4.4.2.2.1 Line Stability Indices	48
4.4.2.2.2 Bus Voltage Computation Indices	s51
4.4.3 Used Method for Voltage Stability Analysis	52
4.4.4 Causes of Voltage Instability	54
4.4.5 Introduction to Voltage Stability Enhancement	54
4.4.5.1 Voltage Stability Enhancement via Losses	Minimization.55
4.4.5.2 Voltage Stability Enhancement via Maxim	izing the VSI57
4.5 Summary	58
Chapter Five: Proposed Methods and Analysis for the the Distributed Generators	
5.1 Introduction	59
5.2 Distributed Generators Allocation Based Improved Algorithm	• ' '
5.2.1 Power Losses	59
5.2.2 IA Expressions According to Different DGs Unit	ts Types [85]60
5.2.3 Power Factor	61
5.2.4 Voltage Stability Index (Lj)	62
5.2.5 Loss Reduction and Voltage Stability Improvement	ent63

5.2.6 Methodology of DG Placement	63
5.3 Distributed Generators Allocation Based Binary PSO	66
5.3.1 Introduction	66
5.3.2 PSO Algorithm Parameters [88]	67
5.3.2.1 Swarm Size	68
5.3.2.2 Iteration Numbers	68
5.3.2.3 Velocity Components	68
5.3.2.4 Acceleration Coefficients	69
5.3.2.5 Inertia Weight (w)	69
5.4 The Binary PSO	71
5.4.1 Disadvantages of the BPSO	71
5.5 NBPSO Algorithm	73
5.5.1 Global and Local Best PSO	74
5.5.2 PSO Variables	74
5.5.3 NBPSO Implementation Steps	74
5.6 Economic Analysis for DG Allocaion	77
5.6.1 Total Cost of Saved Energy	77
5.6.2 Total Cost of Added DG Units	77
5.7 Summary	
Chapter Six: Simulation Results	79
6.1 Assumptions and Constraints	
6.2 33-Node RDN	
6.3 Optimal Power Factor of the Allocated DG Units	79
6.4 Simulation Results Based on an Analytical Method	
6.4.1 Simulation Results and Discussion (DG Allocation from Criteria of: Maximizing Loss Reduction for IEEE 33 Bus Sy (scenario one)	stem)
6.4.1.1 Case: type-1 DG	83
6.4.1.2 Case: type-2 DG	
6.4.1.3 Case: type-3 DG	
6.4.1.4 Case: type-4 DG	85

6.4.2 Simulation Results and Discussion (DG Allocation from Criteria of: Maximizing Loss Reduction at Minimum Cost of IEE Bus System).	E 33
6.4.2.1 Case:type-1 DG	86
6.4.2.2 Case:type-2 DG	86
6.4.2.3 Case:type-3 DG	86
6.4.2.4 Case:type-4 DG	87
6.5 Simulation Results and Discussion (DG Allocation from the Criteria Maximizing Both Loss Reduction and Voltage Stability for IEEE 33 System) (scenario two)	Bus
6.5.1 For Single DG Unit Allocation	87
6.5.2 For Multiple DGs Allocation (scenario 2)	92
6.6 Simulation Results Based on NBPSO	92
6.6.1 Objective Functions Formulation	92
6.6.2 NBPSO Algorithm Parameters and Initials	93
6.6.3 Simulation Results and Discussion (DG Allocation from Criteria of: Maximizing Both Loss Reduction and Voltage Stabili IEEE 33 Bus System) based NBPSO	ty of
6.6.3.1 Case: type-1 DG	95
6.6.3.2 Case:type-2 DG	96
6.6.3.3 Case:type-3 DG	96
6.6.3.4 Case:type-4 DG	97
6.6.4 Cost Analysis	98
6.7 Node RDN	99
6.7.1 Optimal Power Factor of the Allocated DGs	99
6.8 Simulation Results and Discussion (DG Allocation from the Criteria Maximizing Loss reduction of IEEE 85 Bus System) based on Improved Analytical Algorithm	the
6.8.1 Case: type-1 DG	.101
6.8.2 Case: type-2 DG	.101
6.8.3 Case: type-3 DG	.102
6.8.4 Case: type-4 DG	.103

6.9 Simulation Results and Discussion (DG Allocation from	the Criteria of:
Maximizing Both Loss Reduction and Voltage Stability	of IEEE 85 Bus
System) Based on the NBPSO Algorithm	104
6.9.1 Case: type-1 DG	106
6.9.2 Case: type-2 DG	106
6.9.3 Case: type-3 DG	107
6.9.4 Case: type-4 DG	108
6.10 Conclusion	108
Chapter Seven: Conclusions and Future Work	109
7.1 Conclusions	109
7.2 Future Work	110
System) Based on the NBPSO Algorithm 6.9.1 Case: type-1 DG	111
Appendices	120
Appendix A-1	120
Appendix A-2	122
RESEARCHER DATA	126
Publishing	127
ملخص الرسالة	

List of Figures

Figure No.	Caption	Page No.
Figure (1-1):	Electric Power System Network [1]	2
Figure (1-2):	An overall electric power system and its distribution system [2]	4
	A radial distribution system [3]	
	A primary loop distribution system [3]	
	DG Capacities	
Figure (2-2):	Schematic Operation Diagram of a Wind Turbine	16
	Schematic Diagram of a Micro-Turbine	
	Photovoltaic system operation	
	Fuel Cell	
	DG applications	
	DG Placement Objectives	
	Methodologies used for DG placement	
	voltage profile of 33-node RDS	
	A Comparison of voltage profile for 33-node RDN with previous	
	publication	41
Figure (4-1):	classification of power system stability	
	Two Bus System	
	Simple distribution system with DG	
	Flow Chart of DG Placement Technique	
	Concept of a searching point by PSO	
	Velocity updating in PSO	
	Standard Flow chart of PSO	
	Voltage Profile of 33 bus system (type-1 DG allocation based IA-	
	algorithm)	
Figure (6-2):	Voltage Profile of 33 bus system (type-2 DG allocation based IA-	
	algorithm)	84
Figure (6-3):	Voltage Profile of 33 bus system (type-3 DG allocation based IA-	
	algorithm)	85
Figure (6-4):	Voltage Profile of 33 bus system (type-4 DG allocation based IA -	
	algorithm)	
	Loss reduction and voltage stability improvement at each bus	
Figure (6-6):	Loss reduction and voltage stability due to sizing DG unit at the op	
	bus	
	Voltage Profile of 33 bus system (type-1 DG allocation based NB	
	Voltage Profile of 33 bus system (type-2 DG allocation based NB)	
	Voltage Profile of 33 bus system (type-3 DG allocation based NB)	
): Voltage Profile of 33 bus system (type-4 DG allocation based NB	
Figure (6-11): Voltage Profile of 85 bus system (type-1 DG allocation based IA:	
	algorithm)	
Figure (6-12)):Voltage Profile of 85 bus system (type-2 DG allocation based IA	
	algorithm)	102

List of Figures

Figure (6-13): Voltage Profile of 85 bus system (type-3 DG allocation based IA -	
algorithm)	103
Figure (6-14): Voltage Profile of 85 bus system (type-4 DG allocation based IA-	
algorithm)	104
Figure (6-15): Voltage Profile of 85 bus system (type-1 DG allocation based NBP	
	106
Figure (6-16): Voltage Profile of 85 bus system (type-2 DG allocation based NBI	
Figure (6-17): Voltage Profile of 85 bus system (type-3 DG allocation based NBP	SO)
Figure (6-18): Voltage Profile of 85 bus system (type-4 DG allocation based NBP	
Figure (A-1): 33-bus radial distribution network	
Figure (A-2): 85-bus radial distribution network.	