

تسبكة المعلومات الجامعيا

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائق

O ASUNET

بالرسالة صفحات لم

SOME METHODS OF MODIFIED STARCH PRODUCTION AND APPLICATION IN SOME INDUSTRIES

By
WAFAA HAMDY MOHAMED YESIEN
B.SC AGRICULTURE SCIENCE

THESIS

Submitted in Partial Fulfillment Of The Requirements For The Degree Of Master Of Science

IN Food Science

TO

Food Science Department Faculty Of Agriculture, Moshtohor, Zagazig University, Benha Branch

B 00/- 2001

ADVISOR COMMITTEE

SOME METHODS OF MODIFIED STARCH PRODUCTION AND APPLICATION IN SOME INDUSTRIES

BY

WAFAA HAMDY MOHAMED YESIEN

THESIS SUBMTTED IN PRTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN

FOOD SCIENCE AND TECHNOLOGY

Under the supervision of :-

1. prof.Dr.R.M.A.EL-Saadany. R.M.A.E. Saadany. R.M.E. Saadany. R.M.A.E. Saadany. R.M. Saad

2. Dr. Abbas Hassanean Ali. A. M. A. M. A. Head of sector of research and quality control, EGYPTION Starch and Glucose Manufactering Company, Tura Factory

APPROVAL SHEET

Title of the thesis: Some methods of modified starch production and application in some industries

NAME: WAFAA HAMDY MOHAMED YESIEN

This thesis submitted for the M.SC. Degree in Agriculture Science (Food Technology)Has been approved by:

- 1. Prof.Dr.: A. R. Abd El Latif.....
 Prof. Of food Science and Technology, National Research Center,
 Dokki, Giza.

(Committee in charge

Date: 81/3/2001

CONTENTS

SUBJECT	age
1.INTRODUCTION	1
II.REVIEW OF LITERATURE	5
Preparation and application of acid modified starch	5
Preparation and application of corn oxidized starch	10
Preparation and application of starch phosphate	18
III.MATERIALS AND METHODS	26
Materials	
Methods	26
Preparation of modified corn starch	26
1)Preparation of thin boiling starch	26
2)preparation of starch phosphate	27
3)preparation of oxidized starch	27
Analytical methods	
Solubility and swelling power	28
Determination of carbonyl content of oxidized starch	29
Determination of carboxyl content of oxidized starch	29
Determination of viscosity of native starch, acid	
modified starch Oxidized starch and starch phosphate	30
IV.RESULTS AND DISCUSSION	31
Native corn starch	31
1)thin boiling starch	36
2)Starch phosphate	
3)oxidized starch	48
VCIDANARV	62

•	SUBJECT	Page
	VI.REFERENCES	64
	ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page No
Table 1	Analysis of native corn starch	32
Table 2	The solubility and swelling power of native corn starch	32
Table 3	The apparent viscosity of native corn starch	34
Table 4	The solubility and the swelling power of thin boiling modified starch	37
Table 5	The apparent viscosity of thin boiling starch	37
Table 6	The solubility and swelling power of starch phosphate	45
Table 7	The apparent viscosity of starch phosphate	45
Table 8	The solubility and swelling power of oxidized starch	50
Table 9	The apparent viscosity of oxidized starch	50
Table10	The carbonyl and carboxyl content of oxidized starch	51

LIST OF FIGURE

figure	Title	Page
No.		No
figure 1	solubility and swelling power of native starch	33
figure 2	viscosity of native starch	35
figure 3	solubility and swelling power of thin boiling starch by phosphoric acid.	38
figure 4	viscosity of thin boiling starch by phosphoric acid.	39
figure 5	solubility and swelling power of thin boiling starch by hydrochloric acid.	40
figure 6	viscosity of thin boiling starch by hydrochloric acid.	41
figure 7	solubility and swelling power of thin boiling starch by phosphoric acid and hydrochloric acid.	42
figure 8	viscosity of thin boiling starch by phosphoric acid and hydrochloric acid.	43
figure 9	solubility and swelling power of starch phosphate.	46
figure 10	viscosity of starch phosphate.	47

figure No.	Title	Page No	
figure 11	solubility and swelling power of oxidized starch by hydrogen peroxide 3-1.	52	À
figure 12	viscosity of oxidized starch by hydrogen peroxide 3-1.	53	
figure 13	solubility and swelling power of starch produced by hydrogen peroxide 3-2.	54	,
figure 14	viscosity of oxidized starch produced by hydrogen peroxide 3-2.	55	
figure 15	solubility and swelling power of oxidized starch by sodium hypo chlorite.	56	•
figure 16	viscosity of oxidized starch by sodium hypo chlorite.	57	
figure 17	native corn starch, polarized light still birefringence	58	
figure 18	thin boiling starch, polarized light still birefringence.	59	
figure 19	starch phosphate, polarized light lost their birefringence.	60	:
figure 20	oxidized starch, polarized light still birefringence.	61	,
			i

ACKNOWLEDGMENT

I would like to express my deepest gratitude to **prof. Dr. Raouf M. Abd Allah El-Saadany,** prof. of food science and Technology, food science Dept. faculty of Agriculture of Moshtohor. Zagazig University, for his valuable advices, suggesting the problem, helpful guidance and supervision during this study.

Many thanks are due to prof. Dr. Hassan H. A. Khalaf, prof. and Dr. Head of food science and technology, food science department, faculty of Agriculture of Moshtohor. Zagazig University, for his help, advices and supervision during this work.

Many thanks and much gratitude are also extended to **Dr.Abbas Hassanean Ali**, Head of research and quality control secter, Egyptian starch and gluccose manufacturing company, Tura Factory, for his continuous scientific helping, advices during the work, and supervision during this investigation

Name Of Candidate: WAFAA HAMDY MOHAMED YESIEN

Degree : MASTER IN AGRICULTURE SCIENCE

(FOOD TECHNOLOGY)

Title Of thesis : Some Methods Of Modified Starch

Production And Application In Some

Industries

Supervisors : Raouf M. Abd Allah El-Saadany

Abbas Hassanean Ali

Department

: Food Science And Technology

Branch

Approval

ABSTRACT

Three types of modified starch thin boiling starch, oxidized starch and starch phosphate were prepared. The solubility, swelling power and viscosity of native and modified starch were determined at different temperatures the carboxyl and carbonyl content of oxidized starch were determined. The solubility and swelling power of thin boiling starch and oxidized starch was not increased markedly at 20°C and 50°C. But at 90°C the solubility and swelling power was increased to (78-94%) and (55-91) respectively and these values were higher than the solubility and swelling power of native corn starch. The viscosity of thin boiling starch and oxidized starch was (28 and 144 c.p.s) at 50°C these values were lower than the viscosity of native corn starch (9220 c.p.s), the solubility of starch phosphate at 90°C was very high (97.8%). The swelling power was (42.59, 82.68 and 433) at 20°C, 50°C and 90°C. These values was very high by comparison with the swelling power of native starch, thin boiling starch and oxidized starch. The apparent viscosity of starch phosphate was 322 c.p.s at 90°C the viscosity increased by