Modified Cautery Assisted Palatal Stiffening Operation in the treatment of Habitual Snoring

Thesis submitted for partial fulfillment of M.Sc. Degree in Otorhinolaryngology

By

Mahmoud Sherif El-Essawy

(M.B.B.Ch.)

Under Supervision of

Prof. Dr. Usama Mohammed Abdel-Naseer

Professor of Otolaryngology

Faculty of Medicine – Cairo University

Assist. Prof. Dr. Hassan Mohammed El-Hoshy

Assistant Professor of Otolaryngology

Faculty of Medicine – Cairo University

Assist. Prof. Dr. Badawy Chafik Khalifa

Assistant Professor of Otolaryngology

Faculty of Medicine - Cairo University

Faculty of Medicine

Cairo University

2012

بسم الله الرحمن الرحيم

"و قل رب زدني علما"

صدق الله العظيم

Acknowledgment

First of all, I must thank *GOD* for all the blessings I've been given throughout my life and along the bumpy road of learning, those blessings together helped me finish this work.

I would like to express my deepest thanks and sincere appreciations to my principal supervisor *Prof. Dr. Usama Mohamed Abdel-Naseer*, Professor of Otorhinolaryngology and Head and Neck surgery, Faculty of Medicine, Cairo University, for his encouragement and father-hood relationship as well as his patience and helpful advices in the conduction of this work.

I would also like to express my sincere gratitude and cardinal appreciations to *Assist. Prof. Dr. Hassan Mohamed El-Hoshy*, Assistant Professor of Otorhinolaryngology and Head and Neck surgery, Faculty of Medicine, Cairo University, for his continuous supervision and great encouragement throughout the preparation of this work.

I also wish to express my greatest thanks to *Assist. Prof. Dr. Badawy Chafik Khalifa*, Assistant Professor of Otorhinolaryngology and Head and Neck surgery, Faculty of Medicine, Cairo University, for his continuous efforts and valuable advices during the conduction of this work.

I am so grateful and deeply thank *Dr. Ahmed Nassar*, Lecturer of Otorhinolaryngology and Head and Neck surgery, Faculty of Medicine, Cairo University, for his kind cooperation, brother-hood relation and valuable advices that have been of great help in the final outcome of this work.

Moreover, I would like to express my deepest gratitude to all my Professors, Staff members and colleagues in the Otorhinolaryngology and Head and Neck surgery department, Faculty of Medicine, Cairo University for teaching me everything I know today and for their continuous guidance along the way.

Last but not least, I am really grateful to all my family and friends for all their support, love and encouragement. I deeply thank them for all the help they gave me throughout the stages of preparation of this work and the perfect environment of work they set for me.

The library facilities and computer facilities of the Cairo University have been of great help.

My apologies if I have accidentally forgotten anyone to whom acknowledgement is due.

I hope that readers will very much enjoy this work as well as find it educative.

Contents

List of abbreviations	IV
List of figures	VII
List of tables	X
Abstract	XI
Introduction and aim of work	1
Review of literature	
Anatomy	5
Pathophysiology	
Acoustics	
Assessment	19
Clinical picture	29
Complications	33
Management	37
Material and methods	70
Results	75
Discussion	81
Summary	100
References	102
Arabic summary	

List of abbreviations

OSA:	Obstructive sleep apnea
SDB:	Sleep disordered breathing
OSAHS:	Obstructive sleep apnea/hypopnea syndrome
CPAP:	Continuous positive airway pressure
CAPSO:	Cautery Assisted Palatal Stiffening Operation
CN X:	10 th cranial nerve
CN V:	5 th cranial nerve
BMI:	Body mass index
MR:	Magnetic resonance
Pa:	Pascal
mPa:	Millipascal
SPL:	Sound pressure level
N:	Unit of loudness
Hz:	Hertz
UARS:	Upper airway resistance syndrome
OSAS:	Obstructive sleep apnea syndrome
ESS:	Epworth sleepiness scale
SSI:	Snoring Symptoms Inventory
PSG:	Polysomnography
CT:	Computerized tomography
MRI:	Magnetic resonance Imaging
ICSD-2:	International Classification of Sleep Disorders
MPAP:	Mean pulmonary arterial pressure
AHI:	Apnea-Hypopnea index
HRQoL:	Health related quality of life
FTT:	Failure to thrive
ADHD:	Attention deficit-hyperactivity disorder
ROM:	Recurrent otitis media
UPPP:	Uvulopalatopharyngoplasty
CVS:	Cerebrovascular stroke
CAD:	Coronary heart disease
DM:	Diabetes mellitus
COPD:	Chronic obstructive pulmonary disease
IL-6:	Interleukin 6
TNF- α:	Tumor necrosis factor
dB:	Decibel
U:	Units

OA:	Oral appliance
nCPAP:	Nasal continuous positive airway pressure
MAA:	Mandibular advancement appliances
H20:	Water
BiPAP:	Bi-level positive airway pressure
Cm:	Centimeter
ATE:	Adenotonsillectomy
IRFT:	Interstitial radiofrequency therapy
SP:	Soft palate
RF:	Radiofrequency
mL:	Milliliter
°C:	Degree Celsius
J:	Joules
FDA:	Food and Drug Administration
PET:	Polyethylene terephthalate
UPF:	Uvulopalatal flap
LAUP:	Laser – assisted uvulopalatoplasty
VPI:	Velopharyngeal incompetence
LP:	Laser palatoplasty
W:	Watt
mm:	Millimeter
MPH:	Mandibular plane to hyoid distance
LA-	Laser-assisted uvulopalatopharyngoplasty
UPPP:	
RAUP:	Radiofrequency-assisted uvulopalatoplasty
kHz:	Kilo hertz
MHz:	Mega hertz
CAPSO:	Cautery-assisted palatal stiffening operation
RDI:	Respiratory disturbance index
EDS:	Excessive daytime somnolence
ZPPP:	Zetapalatopharyngoplasty
CO2:	Carbon dioxide
U.S:	United states
HS:	Hyoid suspension
MMA:	Maxillomandibular advancement
MLS:	Multilevel surgery
VAS:	Visual analogue scale
UPPD:	Uvulopalatal punctate diathermy
MRAUP:	Modified radiofrequency assisted uvulopalatoplasty
RFA:	Radiofrequency ablation
NPL:	Nasopharyngeal laryngoscopy

IS:	Injection snoreplasty
Fig.:	Figure

List of Figures

Number of figure	Title	Page
1.	Posterior oral cavity/oropharynx. The anterior pillar (<i>palatoglossal arch</i>) marks the posterior boundary of the oral cavity proper. The palatine tonsils, which are located in the tonsillar fossae, are not visible in this photo. <i>Asterisk</i> marks posterior oropharyngeal wall (<i>Bruch & Treister</i> , 2010).	5
2.	Oropharynx showing large palatine tonsils with prominent crypts. Note debris visible within crypts on the left (<i>short arrows</i>) as well as a papilloma at the left base of uvula (<i>long arrow</i>) (<i>Bruch & Treister</i> , 2010).	6
3.	Dissection of muscles of palate from behind (<i>Gray</i> , 2000)	9
4.	Section through one of the crypts of the tonsil. Magnified. Stratified epithelium of general surface, continued into crypt. Nodules of lymphoid tissue: opposite each nodule numbers of lymph cells are passing into or through the epithelium. Cells which have thus escaped to mix with the saliva as salivary corpuscles (<i>Gray</i> , 2000).	12
5.	Snoring sheet	21
6.	Mallampati Class I	24
7.	Mallampati Class II	24
8.	Mallampati Class III	24
9.	(A) The Klearway advancement mechanism is located in the palatal area. (B) The Silencer advancement mechanism is situated in the incisor tooth area. (These MAA are formed with two trays that cover upper and lower teeth and offer free lateral mandibular movements.) (L. Gauthier et al., 2009).	40
10.	Interstitial application of radiofrequency energy via a bipolar needle electrode (<i>Stuck & Verse</i> , 2010).	45
11.	Soft palate procedure. Six lesions (Stuck & Verse, 2010).	46
12.	Outline of the RFT of the tongue base (Stuck & Verse, 2010).	47
13.	Application pattern for RFT of the tonsil (Stuck & Verse, 2010).	47
14.	Delivery handpiece of the Pillar implant system. Full insertion marker, halfway depth marker, and needle tip marker are shown (<i>Walker</i> , 2006).	48
15.	Pillar implant hand piece is entering the soft palate, just below the hard palate. The needle follows the arc of the palate as it passes into the muscle. The needle is passed until the full insertion marker is reached (<i>Walker</i> , 2006).	49
16.	The 3 implants are placed parallel to each other. The implants should be 2 mm (or one needle width) apart (<i>Walker</i> , 2006).	49
17.	Sagittal view of the implant in the muscle layer of the soft palate. Note that the implant is located just below the junction of the hard and soft palate (Walker, 2006).	50

18.	Before UPF procedure (Neruntarat, 2003).	51
19.	One year after UPF procedure (Neruntarat, 2003).	51
20.	Injection Snoreplasty procedure performed in the office (Brietzke & Mair, 2001).	53
21.	Soft palate approximately 2 minutes after injection	53
22.	Laser Palatoplasty (Uppal et al., 2004).	54
23.	Following LA-UPPP the upper airway opens up (<i>Madani</i> , 2007).	55
24.	RAUP, Postoperative state (after 1 day) (<i>Lim et al.</i> , 2007).	56
25.	MRAUP after suturing the edges (Yoruk et al., 2009).	57
26.	(a) Mucosal elevation and dissection(b) Uvular dissection(c) Completion	58
27.	Soft palate shown here is 3 weeks after CAPSO (Wassmuth et al., 2000).	58
28.	Uvulectomy (Pang & Terris, 2007).	59
29.	Vertical cuts (Pang & Terris, 2007).	59
30.	Mucosal strip (Pang & Terris, 2007).	59
31.	Palatal scarring (Pang & Terris, 2007).	59
32.	Final result after adaptive suture (Pirsig & Verse, 2010).	61
33.	Laser applied to surface of palatal musculature to promote scarring (<i>Clarke et al.</i> , 1998).	63
34.	Midline resection (Maurer & Verse, 2010).	65
35.	Lingualplasty (Maurer & Verse, 2010).	65
36.	Suturing (Maurer & Verse, 2010).	65
37.	Additional resection of the majority of the free portion of the epiglottis (<i>Maurer & Verse</i> , 2010).	65
38.	Original technique of glossopexy with fascia lata (<i>Stuck & Verse</i> , 2010).	66
39.	Original technique of (HS) with homologue fascia lata here combined with genioglossus advancement (<i>Vries & Verse</i> , 2010).	67
40.	Inferior sagittal osteotomy (Verse, 2010)	67
41.	Post-operative situation (Verse, 2010)	67
42.	Left: preoperative situation. Retropositioned maxilla and mandible with narrow pharyngeal airway space. Right: after MMA the widened pharynx, an anterior positioned tongue and soft palate can be seen (Hierl, 2010).	68
43.	Needle-tip Bovie electrocautery device	71
44.	Uvulectomy	72
45.	Vertical cuts on either side of the uvula	72
46.	Horizontal strip of mucosa is removed down to muscle.	73

Index

47.	Picture immediately post-operative	73
48.	Entire procedure showing the uvulectomy, vertical trenches, and horizontal strip of mucosa removed.	74
49.	Picture of the soft palate 3 months post-operative	76

List of tables

Number of table	Title	Page
1.	Clinical Examination and Methodology for Mesopharyngometry	25
2.	Results	77

Abstract

Background: Snoring is a relatively common complaint that is more common in males. Snoring is a unique clinical situation, in which the snorer is considered to be a patient and given treatment. Many options are available, surgical and non-surgical. Surgical treatment includes procedures done using cold instruments, radiofrequency, laser and cautery (UPPP, LAUP, RAUP, CAPSO and their modifications).

Objective & Design: In this prospective study 50 patients underwent Modified Cautery Assisted Palatal Stiffening Operation "CAPSO" under general anaesthesia to evaluate it's effectiveness in the treatment of snoring.

Material: All patients were only snorers with BMI less than 33, tonsil size grades 1 and 2. Assessment was done using VAS for improvement of snoring, Muller's maneuver and Eliciting palatal flutter on voluntary mimicking of the snoring sound.

Results: Out of the 50 patients 9 patients had excellent results (18%), 2 of which reported complete abolishment of snoring (4%). 6 patients were considered a failure (12%). The remaining 35 patients reported satisfactory results (70%).

Conclusion: In conclusion, Modified CAPSO is a simple, low cost procedure that can be performed as a single session with excellent results and a low complication rate.

Keywords: Modified CAPSO, Habitual snoring, Palatal stiffening.

Introduction and Aim of work

When we talk about snoring as an expression of life, we must consider the physical components to be fundamental. Sleep is the prerequisite for snoring, this already heralds the word itself which is of Greek-Latin origin: *stertere* (*snore*) may be related to the Greek word for *sleep*. It was stated about the inhabitants of Tarsus in Asia Minor, "They furnish the most distinct evidence of sleep, they snore". However, not all sleepers snore: "Snoring only befalls some of the sleeping". KARNEADES said, "you may even snore if you desire, not only rest." Snoring, however, does not exclusively occur during sleep. This sound is sometimes only shammed as a proof of sleep. (*Pirsig*, 2002).

Snoring is not a new phenomenon. It has been recognized as a social problem for thousands of years, and is regularly referred to in classical literature. In these early references, there is often little distinction between the words for snoring or for sleep, which may well have the same origin in ancient Greek. Some of the predisposing factors to snoring were also frequently noted in ancient literature, but probably none more succinctly than in Virgil's Aeneid where three: obesity, alcohol and position are mentioned in a single line 'Who, gorged, and drunk with wine, supinely snore' (*Counter and Wilson, 2004*).

Snoring is defined as the sounds made by vibrations in the soft palate and their adjacent tissues (such as the posterior faucial pillars) during sleep. Researchers have shown that it is the most important symptom connected with the obstructive sleep apnea (OSA) syndrome, as well as the cause of much disruption to bed partners and to the snorer (*Verin et al.*, 2002).

A useful working definition of snoring is the production of sound by *vibration* of the upper aerodigestive tract during sleep. The diagnosis of simple snoring, however, is one of exclusion. It requires that the presence of any other nocturnal respiratory pathology be excluded. It is therefore important for any physician treating snoring to understand the

pathophysiology behind sleep disordered breathing (SDB) (Counter and Wilson, 2004).

Current research also shows that snoring might indicate the first stage of the OSA syndrome (Heavy snoring can result in sleep-related upper airway narrowing, which leads to respiratory flow limitation and increased respiratory effort. Strong inspiratory suction may, secondarily, cause a total upper airway collapse (*Liu et al.*, 2007).

Snoring is part of the spectrum of SDB, from obstructive sleep apnea/hypopnea syndrome (OSAHS) at one end to simple snoring at the other. The entire spectrum is characterized by changes in the physical conformation, structural properties and neuromuscular function of the pharynx. The spectrum has also been characterized in respect of the pressure required to collapse the upper airway. Thus, despite qualitative differences in pathology, the pathophysiological difference between simple snoring and OSAHS may be merely quantitative (*Counter and Wilson, 2004*).

A mathematical model of snoring has been created in terms of airflow through an elastic tube. If the geometry, elasticity, resistance and flow are adjusted correctly then the tube can be made to open and close repetitively. This leads to production of sound that is acoustically very similar to snoring. If the parameters are altered further complete collapse of the tube can be created, simulating apnoea. Unfortunately this technique does not reliably locate exact level of sound production within the pharynx, as the airway instability may occur at any level. Similarly, clinical observations confirm vibration anywhere from the soft palate to the epiglottis. This mathematical model does, however, suggest the mechanism by which variations in muscle tone, airway dimensions and route of breathing (nasal or oral) may cause snoring (*Gavriely and Jensen*, 1993).

If untreated, heavy snoring may be complicated by excessive daytime sleepiness. Hence, snoring has received much clinical attention in recent years. These studies are mainly devoted to the effects of snoring on health and to the treatment effects (*Ayappa and Rapoport*, 2003).