

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPARTMENT

ENERGY MANAGEMENT AND OPERATIONAL PLANNING IN MICROGRIDS

M. SC. THESIS PREPARED BY ENG. AHMED EL-SAYED MAHMOUD

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE M. SC. DEGREE IN ELECTRICAL ENGINEERING

SUPERVISED BY PROF. DR. MAHMOUD ABDELHAMID MOSTAFA DR. MOHAMED EZZAT

CAIRO, 2015

EXAMINERS COMMITTEE

NAME : Ahmed El-Sayed Mahmoud El-Sayed Mostafa

THESIS TITLE: Energy Management and Operational Planning in Microgrids

DEGREE : Submitted in partial fulfillment of the requirements for the M. Sc.

degree in Electrical Engineering.

NAME, TITLE AND AFFILIATION:

SIGNATURE

Prof. Dr. Nabil Hassan Abbasi

Professor of Power Systems Electrical Engineering Department Faculty of Engineering, Alexandria University

Prof. Dr. Almoataz Youssef Abdelaziz

Professor of Power Systems Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Mahmoud Abdelhamid Mostafa

Professor of Power Systems Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

NAME : Ahmed El-Sayed Mahmoud El-Sayed Mostafa

THESIS TITLE: Energy Management and Operational Planning in Microgrids

DEGREE : Submitted in partial fulfillment of the requirements for the M. Sc.

degree in Electrical Engineering.

NAME, TITLE AND AFFILIATION:

SIGNATURE

Prof. Dr. Mahmoud Abdelhamid Mostafa

Professor of Power Systems Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Dr. Mohamed Ezzat

Associate Professor of Power Systems Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements for M. Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the Department of Electrical Power and Machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

NAME : Ahmed El-Sayed Mahmoud El-Sayed Mostafa

SIGNATURE:

DATE : .../.../2015

ACKNOWLEDGEMENT

I thank Allah, for wisdom and knowledge that He has blessed me. You made me strong. You gave me reasons to go and make the best out of me. You are the reason why I am here.

I would like to thank my supervisors: Professor Dr. Mahmoud Abdelhamid Mostafa and Dr. Mohamed Ezzat for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and major influence in my academic life. I could not possibly list all that I have learned from them.

I am grateful for my parents and my lovely wife, who helped me through all these and thanks to my little daughter "Lujaina". Thank you all for supporting me in every way.

Ahmed El-Sayed Mahmoud El-Sayed Mostafa Cairo, 2015

ABSTRACT

Electrical energy demand has been dramatically increased all over the world for the past decades. Renewable energy sources (RES), such as wind power, solar power, should be utilized to meet this tremendous energy demand shifting from reliance on the conventional energy sources based mainly on fossil fuels. A more recent concept exists for grouping a cluster of loads with RES distributed generators in a certain local area forming a Microgrid.

In this context, Microgrid is a key concept to transform the current power system to Smart Grid and realize the distributed control scheme on the power system operation. One of the main research areas in the smart grid is the energy management applications such as Load Management. The Load Management is one of the main important elements of energy conservation aimed at reducing energy consumption in smart grids. The term internationally used for Load Management is Demand Side Management (DSM), although there are similar terms such as Demand Response (DR). DR programs are widely implemented on the commercial and industrial side customers.

The problem addressed by this thesis in the Case Study Part-I is the insufficient awareness of residential side customers about the importance of DR and most of them have insufficient tools. Home energy management (HEM) system which is responsible for monitoring and managing the energy consumption of home appliances, is the most popular DR automation type for residential side customers. HEM system, provides many benefits such as reduction in peak demand, savings in the electricity bill and meeting the demand side requirements.

The case study Part-I includes two control approaches. Direct and indirect controls are applied as HEM systems. Load data is obtained from real sample household. Simulation results obtained from MATLAB/Simulink software demonstrate the effectiveness of the proposed approaches in demand reduction hence decreasing the electricity bill of customers.

In Case Study Part-II, the thesis focuses on the utilization of Renewable Energy Recourses (RES) as Distributed Generation (DG). DG as important part of the Smart Grid has flexible installation locations solving the problems of large/middle centralized power grids. Also, the usage of different energy sources (especially the RES) allows improving the efficiency and reliability of the Microgrid and reduces energy storage requirements compared to systems comprising only one single renewable energy source.

Among the various renewable sources of energy, the most popular sources are the solar and wind energy. Utilization of solar/wind energy became increasingly significant, attractive and cost-effective, since the oil crises of early 1970s. These sources as independent systems cannot provide continuous source of energy, as they are seasonal. Integrating wind and solar resources in a proper combination can overcome the drawbacks of their unpredictable nature and dependence on weather climatic changes. Hybrid Photovoltaic Wind Systems - HPWS can be beneficial in enhancing the economic and environmental sustainability of renewable energy systems. To use solar and wind energy resources more efficiently and economically; Optimal scheduling and sizing of HPWS plays an important role.

Marsa Matruh, Egypt is used as the site for Case Study Part-II to illustrate the effectiveness of the proposed algorithms. The objective is to optimally size a HPWS to supply a group of loads connected to the grid in order to reliably meet the demand requirements.

For the given location and for different scenarios, simulations for the proposed system are designed using MATLAB/Simulink software. The choice of various combinations of sizes of the solar PV arrays, wind turbines and units of the purchased electricity From/To grid is made based on the results obtained from GA and PSO optimization.

This thesis recommends the application of control approaches using HEM systems on residential side customers to achieve the maximum benefits by shifting/shedding the loads automatically and applying the incentive/price based schemes in order to encourage the residential side customers to use the DR programs, and also recommends the utilization of Hybrid PV/WT Grid Connected Systems to improve Microgrids efficiency and increase power system reliability.

Further researches on alternative methods or modifications of the existing approaches are to be worked out so as to achieve more cost and energy savings.

TABLE OF CONTENTS

		PAGE
EXAMINERS COMMIT	TEE	I
SUPERVISORS COMM	ITTEE	II
STATEMENT		III
ACKNOWLEDGEMEN	T	IV
ABSTRACT		V
TABLE OF CONTENTS	3	VII
LIST OF FIGURES		X
LIST OF TABLES		XIV
LIST OF ABBREVIATI	ONS	XVI
LIST OF SYMBOLS		XIX
1. INTRODUCTION		2
1.1 ENEGRY MANAGE	EMENT	4
1.1.1 Energy Manage	ement and Operational Control History	4
1.1.2 Energy Manage	ement System Standard: ISO 50001	8
1.2 PREVIOUS LITERA	ATURE	9
1.2.1 Literature Revi	ew on Energy Management and Operational Planning	9
1.2.2 Literature Revi	ew on Hybrid PV/Wind Generation	10
1.3 THESIS OBJECTIV	YES	13
1.4 THESIS CONTENT	'S	13
2. ENEGRY MANAG	GEMNT AND PLANNING	15
2.1 ENERGY MANAC MANAGEMENT	GEMENT THROUGH PRODUCERS: SUPPLY SI	DE 15
2.1.1 Energy Manage	ement Techniques on Supply Side	15
2.1.2 Other Energy N	Management Measures Taken by Utility Industries	16

TABLE OF CONTENTS

		<u>P</u>	<u>AGE</u>
2.2		RGY MANAGEMENT THROUGH CUSTOMERS: DEMAND SIDE NAGEMENT (DEMAND RESPONSE)	16
2.	2.1	Why is Demand Response Important?	17
2.	2.2	Benefits of Demand Response	18
2.	2.3	Characterization of Demand Response Programs	19
2.	2.4	Demand Response Strategies	21
2.	2.5	Demand Response and Difference from Energy Efficiency	23
2.	2.6	Future Directions Towards Automated Demand Response	24
2.	2.7	Policy Recommendations for Implementation of Demand Response	25
2.3		ERGY MANAGEMENT STRATEGIC FRAMEWORK AND NNING	26
2.	3.1	Local Energy Management	28
2.	3.2	Microgrid Energy Management	28
3.	HYI	BRID PV/WIND GENERATION	31
3.1	INT	RODUCTION	31
3.2	HYE	BRID ENERGY SYSTEMS CONFIGURATIONS	31
3.	2.1	Stand-Alone Hybrid Power System	32
3.	2.2	Grid Connected Power System	32
3.3	HYE	BRID POWER SYSTEM COUPLING	33
3.	3.1	AC coupled systems	33
3.	3.2	DC coupled systems	36
3.	3.3	Combined AC-DC coupled systems	37
3.4	ADV	VANTAGES OF HYBRID PV/WIND SYSTEM	38
3.5	OPT	TMIZATION	38
3.	5.1	Criteria for Hybrid PV/Wind System Optimizations	38

TABLE OF CONTENTS

		<u>I</u>	PAGE
3.5	5.2	Optimization Sizing Methods for Hybrid PV/Wind System	40
4.	CAS	E STUDIES SCENARIOS AND SIMULATIONS	46
4.1	PAR	T (I) ENERGY MANAGEMENT THROUGH DR	46
4.1	1.1	Methodology and Proposed Algorithms	46
4.1	1.2	Overview of Simulation Model	48
4.1	1.3	Simulation Results	49
4.1	1.4	General Building Design Suggestions and Electricity Saving Tips	50
4.2	PAR	T (II) OPTIMAL SIZING OF HYBRID PV WIND SYSTEM	51
4.2	2.1	Modeling of The Hybrid PV/Wind System	51
4.2	2.2	Problem Formulation	55
4.2	2.3	Case Study Part-II Optimization Techniques for Hybrid PV/Wind System	57
4.2	2.4	Methodology and Proposed Algorithms	59
4.2	2.5	Overview of Simulation Models	62
4.2	2.6	Simulation Results	67
5.	CON	NCLUSIONS AND RECOMMENDATIONS	91
REFI	EREI	NCES	92

	<u>I</u>	PAGE
FIG. 1-1	World Total Energy Consumption	2
FIG. 1-2	Ontario Power Generation Control room at the Sir Adam Beck 1 Power Station 1933, Canada	5
FIG. 1-3	EMS Development from analog systems to digital computers and software	6
FIG. 1-4	General Energy management system cycle according to ISO 50001 Standard	9
FIG. 2-1	Characterization of Demand Response Programs	20
FIG. 2-2	Home Energy Management (HEM) System Typical Example	22
FIG. 2-3	Framework of the central EMS	26
FIG. 2-4	Prosumer with load demand response and production capabilities	27
FIG. 2-5	Microgrid integrating renewable energy based active generators	27
FIG. 2-6	Timing classification of control functions for EMS	28
FIG. 3-1	Stand-Alone Hybrid System	32
FIG. 3-2	Grid-connected Hybrid System	33
FIG. 3-3	System layout of an AC coupled Microgrid	34
FIG. 3-4	PV-System with 31 kW PV-generator in a Greek monastery	34
FIG. 3-5	Microgrid on Madagascar with three stall wind turbines and frequency controlled loads	36
FIG. 3-6	Energy supply system in South Africa with two wind turbines with PME generator and inverter	36
FIG. 3-7	System layout of a DC coupled PV system	37
FIG. 3-8	System layout of a combined AC-DC coupled hybrid Microgrid	37
FIG. 4-1	Case Study Part-I Residential Tariffs Diagram	46
FIG. 4-2	Flow Chart of the Second Scenario Algorithm	47
FIG. 4-3	Screen shot of the simulation model	49

		PAGE
FIG. 4-4	MATLAB/Simulink 24 Sec. as 24 hours (a day) simulation results	49
FIG. 4-5	A typical solar panel characteristic	51
FIG. 4-6	Flow Chart for MPPT Algorithm	52
FIG. 4-7	Single Diode PV cell equivalent circuit	53
FIG. 4-8	A typical wind turbine characteristic	54
FIG. 4-9	Genetic Algorithm flow chart	57
FIG. 4-10	PSO flow chart	58
FIG. 4-11	Marsa Matruh, Egypt Coordinates	60
FIG. 4-12	Overall System Model	62
FIG. 4-13	Utility Grid model (25 kV)	62
FIG. 4-14	Load model load profile for both Summer and Winter days	63
FIG. 4-15	PV Simulation Model	63
FIG. 4-16	PV Model SuntechSTP270S-24_Vb 1.88 kW	64
FIG. 4-17	PV I-V Characteristics	64
FIG. 4-18	PV Output Power for Summer and Winter days	65
FIG. 4-19	The WT Simulation Model 6 kW per each WT Generator	66
FIG. 4-20	Wind Turbine Characteristics	66
FIG. 4-21	WT Output Power	67
FIG. 4-22	Scenario No.1 Grid Connected Only - Summer Day System Model	67
FIG. 4-23	Scenario No.1 Grid Connected Only - Summer Day Power Scope	68
FIG. 4-24	Scenario No.1 Grid Connected Only - Summer Day Power Share	68
FIG. 4-25	Scenario No.1 Grid Connected Only - Winter Day Power Scope	69
FIG. 4-26	Scenario No.1 Grid Connected Only - Winter Day Power Share	69

	<u>!</u>	'AGE
FIG. 4-27	Scenario No.2 PV Grid Connected Buy - Summer Day System Model	70
FIG. 4-28	Scenario No.2 PV Grid Connected Buy - Summer Day Power Scope	70
FIG. 4-29	Scenario No.2 PV Grid Connected Buy - Summer Day Power Share	71
FIG. 4-30	Scenario No.2 PV Grid Connected Buy - Winter Day Power Scope	72
FIG. 4-31	Scenario No.2 PV Grid Connected Buy - Winter Day Power Share	72
FIG. 4-32	Scenario No.2 PV Grid Connected Buy/Sell - Summer Day Power Scope	73
FIG. 4-33	Scenario No.2 PV Grid Connected Buy/Sell - Summer Day Power Share	74
FIG. 4-34	Scenario No.2 PV Grid Connected Buy/Sell - Winter Day Power Scope	75
FIG. 4-35	Scenario No.2 PV Grid Connected Buy/Sell - Winter Day Power Share	75
FIG. 4-36	Scenario No.3 WT Grid Connected Buy - Summer Day System Model	76
FIG. 4-37	Scenario No. 3 WT Grid Connected Buy - Summer Day Power Scope	76
FIG. 4-38	Scenario No. 3 WT Grid Connected Buy - Summer Day Power Share	77
FIG. 4-39	Scenario No. 3 WT Grid Connected Buy - Winter Day Power Scope	78
FIG. 4-40	Scenario No. 3 WT Grid Connected Buy - Winter Day Power Share	78
FIG. 4-41	Scenario No. 3 WT Grid Connected Buy/Sell - Summer Day Power Scope	79
FIG. 4-42	Scenario No. 3 WT Grid Connected Buy/Sell - Summer Day Power Share	80
FIG. 4-43	Scenario No. 3 WT Grid Connected Buy/Sell - Winter Day Power Scope	81
FIG. 4-44	Scenario No. 3 WT Grid Connected Buy/Sell - Winter Day Power Share	81
FIG. 4-45	Scenario No.4 Hybrid PV/WT Grid Connected Buy - Summer Day System Model	82
FIG. 4-46	Scenario No.4 Hybrid PV/WT Grid Connected Buy - Summer Day Power Scope	82
FIG. 4-47	Scenario No.4 Hybrid PV/WT Grid Connected Buy - Summer Day Power Share	83

	<u>]</u>	PAGE
FIG. 4-48	Scenario No.4 Hybrid PV/WT Grid Connected Buy - Winter Day Power Scope	84
FIG. 4-49	Scenario No.4 Hybrid PV/WT Grid Connected Buy - Winter Day Power Share	84
FIG. 4-50	Scenario No.4 Hybrid PV/WT Grid Connected Buy/Sell - Summer Day Power Scope	85
FIG. 4-51	Scenario No.4 Hybrid PV/WT Grid Connected Buy/Sell - Summer Day Power Share	86
FIG. 4-52	Scenario No.4 Hybrid PV/WT Grid Connected Buy/Sell - Winter Day Power Scope	87
FIG. 4-53	Scenario No.4 Hybrid PV/WT Grid Connected Buy/Sell - Winter Day Power Share	87

LIST OF TABLES

		<u>PAGE</u>
TABLE 2-1	Conventional and emerging energy storage technologies and their primary applications	r 23
TABLE 2-2	Some key examples of differences between demand response and energy efficiency	d 23
TABLE 2-3	Levels of DR automation	24
TABLE 3-1	Simple summary of the relative merits and demerits of different optimization methodologies	t 44
TABLE 4-1	Case Study Part-I Residential Tariffs	47
TABLE 4-2	Household Appliances, Power Consumption and Operating Time per Day	r 48
TABLE 4-3	Energy and cost saving in both scenarios	50
TABLE 4-4	Typical Summer and Winter days weather data	60
TABLE 4-5	Case Study Part II Scenarios for both Summer and Winter Typica Days	l 61
TABLE 4-6	Case Study Part II Electricity Tariffs	61
TABLE 4-7	PV Module data	65
TABLE 4-8	WT Model 6 kW Data	66
TABLE 4-9	Scenario No.2 Buy - Summer Day Hourly Optimal No. of System Components	n 71
TABLE 4-10	Scenario No.2 Buy - Winter Day Hourly Optimal No. of System Components	n 71
TABLE 4-11	Scenario No.2 Buy/Sell - Summer Day Hourly Optimal No. of System Components	f 73
TABLE 4-12	Scenario No.2 Buy/Sell - Winter Day Hourly Optimal No. of System Components	n 74
TABLE 4-13	Scenario No.3 Buy - Summer Day Hourly Optimal No. of System Components	n 77
TABLE 4-14	Scenario No.3 Buy - Winter Day Hourly Optimal No. of System Components	n 77