SOME STUDIES ON THE FACTORS OF PATHOGENIC DETERMINANTS OF STAPHYLOCOCCUS AUREUS ISOLATED FROM BOVINE MASTITIS

A Thesis

Presented to the Graduate School

Faculty of Veterinary Medicine, Alexandria University

In Partial fulfillment of the

Requirements for the Degree

Of

Master of Veterinary Sciences

In

Microbiology

Specialization (Bacteriology and Mycology)

By

Saad El-Said Amer Kotb

بعض الدراسات عن عوامل الضراوة لميكروب المكور العنقودى الذهبى المعزول من إلتهاب الضرع في الماشية

رسالة علمية مقدمة إلى الدراسات العليا بكلية الطب البيطرى – جامعة الأسكندرية إستيفاء للدراسات المقررة للحصول على درجة

ماجستير العلوم الطبية البيطرية

فی المیکروبیولوجیا تخصص (بکتریولوجیا و فطریات)

مقدمة من ط.ب./ سعد السيد عامر قطب

Advisors' Committee

Prof. Dr. Mohamed Ali Akiela

Professor of Microbiology
Head of Microbiology Department
Faculty of Veterinary Medicine
Alexandria University

Prof. Dr. Riad Hassan Khalil

Professor of Fish and Crustacean Diseases

Head of Poultry and Fish Diseases

Department

Faculty of Veterinary Medicine

Alexandria University

لجنة الإشراف

الأستاذ الدكتور/ محمد على عقيلة

أستاذ الميكروبيولوجيا رئيس قسم الميكروبيولوجيا كلية الطب البيطرى جامعة الأسكندرية

الأستاذ الدكتور/ رياض حسن خليل

أستاذ أمراض الأسماك و القشريات رئيس قسم أمراض الدواجن و الأسماك كلية الطب البيطرى جامعة الأسكندرية

بشمالله التخمر التحيم

و ما أوتيته من العلم إلا قليسلاً

صدق الله العظيم سورة الإسراء الآية رقم ٨٥

Dedicated To My Parents My Sisters & My Brother

ACKNOWLEDGMENT

First of all, my deepest prayerful thanks to **Allah** for giving me the strength and ability to accomplish this work and for everything I have been given in all my life.

It is really difficult to find suitable words to express my sincere gratitude to **Professor Dr. Mohamed Ali Akiela**, Professor of and Head of Microbiology Department, Faculty of Veterinary Medicine, Alexandria University for his scientific supervision, help and kind advice.

I would like to express my deep appreciation to **Professor Dr. Riad Hassan Khalil**, Professor of Fish and Crustacean Diseases, and Head of Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University for his unfailing help and supervision throughout this work.

I wish to express my deepest thanks to **Professor Dr. Abdel-Rasheed Fathy Ghanem**, Deputy of Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, for his valuable cooperation, interest and encouragement during the fulfillment of this study.

I am also deeply indebted and grateful to **Professor Dr. Helmy A. Torky**, Professor of Microbiology, Faculty of Veterinary Medicine,
Alexandria University for his help, advice, and continuous encouragement.

Great thanks and appreciation to **Professor Dr. Samy A. Khaleil**, Professor of Microbiology, Faculty of Veterinary Medicine, Alexandria University for his sincere support and guidance throughout this work.

All of my sincere appreciation to all members of the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University for their help and the facilities they provided during the study.

Finally, I would like to express my special thanks to my parents, and my family for the encouragement and support given to me to fulfill this work, and for help throughout my life.

LIST OF ABBREVIATIONS

Y-DE Y-D electrophoresis

APHA American Public Health Association

bp Base pair

CLFa Clumping factor

CMT California mastitis test

CNS Coagulase negative staphylococci

Coa Coagulase gene

CPS Coagulase positive staphylococci

CRF Coagulase reacting factor DDW Double-distilled water

dNTPS Deoxynucleotide triphosphate solution EDTA Ethylene diamine tetra-acetic acid

ET Exfoliative toxin
Fnb Fibronectin binding A
FSF Fibrin stabilizing factor
hla Alpha-haemolysin
hlb Beta-haemolysin

IMI Intramammary infection

Luk Leukocidin gene

MLST Multilocus sequence typing

mPCR Multiplex polymerase chain reaction

nuc Thermonuclease gene O-F Oxidation-Fermentation

PAGE polyacrylamide gel electrophoresis.

PCR Polymerase chain reaction
PFGE Pulse field gel electrophoresis

RFLP Restriction fragment length polymorphism RPLA Reverse passive latex agglutination assay

rRNA Ribosomal ribonucleic acid

S. Staphylococcus SCC Somatic cell count

SDS Sodium dodecyle sulphate
SE Staphylococcal enterotoxin
SEA Staphylococcal enterotoxin A

Sp. Species

Spa Staphylococcal protein A

Str. Streptococcus

TCT Tube coagulase test

TE Tris-EDTA

TM Melting temperature
TPE Tris-phosphate EDTA

TSST-I Toxic shock syndrome toxin-

Tth Thermus thermophilus

TABLE OF CONTENTS

	PAGE
INTRODUCTION	١
REVIEW OF LITERATURE	٣
Y, \. Classification of staphylococci	٣
Y,Y. Incidence of S. aureus in Mastitis milk	٥
۲٫۳. Predisposing factors and epidemiological characteristics of <i>S. aureus</i> in mastitis milk	١٢
۲٫٤. Characters of staphylococci	١٤
Y,o. Pathogenesis and pathogenicity of S. aureus	١٤
۲٫٦. Biological characters of staphylococci	١٨
۲,٦,١. Coagulase reactions	١٨
۲,٦,٢. Haemolysin production	
۲,٦,٣. Deoxyribonuclease (DNase) production	77
Y, V. Using of polymerase chain reaction (PCR) for detection of gene for	
S. aureus enterotoxin A (SEA)	70
MATERIAL AND METHODS	٣.
T, 1. Material	٣.
T, 1, 1. Animals T.	
۳٫۱٫۲. Milk samples	٣.
۳,۱,۳. Media used	٣.
۳,۱,٤. Reagents and solutions	٣١
T, 1, o. Biological materials	٣1
T,1,7. Stains	٣١
T, Y, Materials used for extraction of DNA	٣١
۳٫۱٫۸. Material used for thermal cycling	٣١
T, 1, 9. Materials used for agarose gel electrophoresis	
۳,۱,۱. Other materials	٣٣
۳٫۲. Methods	٣٣
۳٫۲٫۱. Collection of clinical mastitis milk samples	٣٣
٣,٢,٢. Examination of the clinical mastitis milk samples	٣٣
۳,۲,۳. Purification	٣٤
۳,۲,٤. Identification of the isolates	٣٤

⁷ , ⁷ , o. Detection of S. aureus enterotoxin A (SEA) coding gene by PCR	٣٧
RESULTS	٤٠
٤,١. Incidence of clinical mastitis and characteristics of clinical mastitis milk	
samples	٤٠
۶٫۲. Bacteriological examination of clinical mastitis milk samples	٤١
٤,٢,١. Cultural characteristics	٤١
٤,٢,٢. Gram's staining ٤١	
۶,۳. Biochemical identification of suspected S. aureus	٤٣
٤,٤. Pathogenic determinants	٤٥
٤,٤,١. Tube coagulase test (TCT)	٤٥
٤,٤,٢. Haemolysis activity	٤٥
٤,0. Results of amplification of S. aureus enterotoxin A (SEA) coding gene by	
using PCR	٤٦
DISCUSSION	٤٨
SUMMARY	07
REFERENCES	٥٣
ARABIC SUMMARY	٦9

LIST OF TABLES

		PAGE
•	Table (1): Number of the examined clinical mastitic cases and seasons	٣.
•	Table (*): Nucleotide sequence, gene location, and anticipated size of PCR product for the <i>S. aureus</i> gene-specific oligonucleotide primer	٣٢
•	Table (♥): Results of O-F test	80
•	Table (4): Differentiation between Staphylococcus and Micrococcus species	٣٦
•	Table (°): Biochemical reactions and other characteristics of <i>S. aureus</i>	٣٦
•	Table (1): PCR thermal cycler	٣٨
•	Table (Y): Incidence of clinical mastitis among examined two farms	٤٠
•	Table (^): Morphology of suspected colonies recovered from clinically mastitis milk samples on nutrient agar, mannitol salt agar and Baired-Parker's agar medium	٤٢
•	Table (4): Biochemical activities of obtained suspected <i>S. aureus</i> isolates recovered from clinical mastitis milk samples	٤٤
	Table (\cdot \cdot \cdot): Pathogenic determinants of isolated <i>S. aureus</i>	٤٥

LIST OF FIGURES			
	Figure (1): Agarose gel electrophoresis patterns showing PCR amplification	PAGE	
	products for the S. aureus enterotoxin A (SEA) coding gene	٤٧	
	X777		
	VII		

INTRODUCTION

Worldwide bovine mastitis is the most common infectious disease affecting milk producing cows causing economic losses higher than any other disease of dairy cattle (Gillespie and Oliver, $^{r} \cdot \cdot ^{o}$). Also, it possesses food safety and anti-microbial resistance threats (Kim et al., $^{r} \cdot \cdot ^{o}$), as it is the primary contamination source of milk and milk products especially in case of defective pasteurization (Joffe and Baranovics, $^{r} \cdot \cdot ^{o}$).

The major causes of bovine mastitis are Staphylococcus (S.) aureus, Str. agalactiae, Str. dysgalactiae, Str. ubris (Phuektes et al., $\uparrow \cdot \cdot \cdot 1$). S. aureus is recognized worldwide as a major pathogen causing subclinical intramammary infections in dairy cows (Salasia et al., $\uparrow \cdot \cdot \cdot \cdot \cdot 1$).

Identification of bacterial pathogens in milk from cows with mastitis is the definitive diagnosis of mastitis infections. It also provides information important for prevention and control of the disease. In most clinical laboratories identification methods are based on microbiological culture of milk and biochemical identification of bacterial isolates recovered. However, these microbiological cultures are limited by the dynamic nature of infections. Subclinically infected cows are intermittent shedders of organisms through low and high shedding patterns during lactation leading to negative cultures (*Phuektes et al.*, *****).

In bovine mastitis, coagulase positive staphylococci (CPS) (S. aureus and some strains of S. hyicus) are common pathogenic than coagulase negative staphylococci (CNS) isolates (Ali-Vehmas and Sandholm, 1992). The TCT has the potential to detect not only S. aureus but also other CPS in milk.

The ability of *S. aureus* to form clumps in the presence of plasma has been known since the turn of the century (*Much*, 19.4). Staphylococcal components which interact with fibrinogen and can be purified from *S. aureus* culture supernatant fluids have been described. These include a staphylocoagulase and a cell wall protein (clumping factor, CLFa) which binds with fibrinogen (*Boden and Flock*, 1997). Staphylocoagulase, produced by *S. aureus*, form an active molecular complex with prothrombin which converts fibrinogen to a fibrin clot (*Hendrix et al.*, 1947). Studies of gene sequences have demonstrated that coagulase and CLFa factor are genetically distinct (*McDevitt et al.*, 1997). Detection of staphylocoagulase and CLFa are used for identification of *S. aureus* in diagnostic laboratories (*Kloos and Schleifer*, 1947). Molecular epidemiological analysis of bovine *S. aureus* population suggested that a small numbers of clonal types were responsible for most infections, and that strains had a broad geographic distribution (*Kalorey et al.*, 1998). A better knowledge on the distribution of *S. aureus* in dairy animals might help formulate strategies to reduce the spread of infection (*Salasia et al.*, 1998).

The analysis of relationship between presence/absence of the different genes and the udder inflammatory response measured by milk somatic cell count (SCC) showed that at least one cluster, which made by classification of isolates in cluster by virulence genes, induced a higher inflammatory response. Moreover, the analysis of the association between virulence genes and the presence of subclinical mastitis, support that it could be related to strain characteristics, and the expression of specific combination of virulence factor specially the spa (staphylococcal protein A), COA (coagulase gene) and SEJ (one of the SEs) (**Zecconi et al.**, **.***7). No remarkable difference was recognized in the identification ratio of the isolates which belonged to the two major lineages between mastitis of subclinical origin and clinical origin (**Hata et al.**, **.**7).

This work aimed to study some factors of the pathogenic determinants of *S. aureus* isolated from clinical bovine mastitis. This will be accomplished through:

- 1. Isolation and classification of staphylococci recovered from samples collected from clinically mastitis cows examined.
- 7. Determining the incidence of *S. aureus* in milk samples collected from cases of bovine clinical mastitis.
- γ. Studying certain pathogenic determinants of *S. aureus* recovered from clinical mastitis milk. Moreover, identification of *S. aureus* enterotoxin (SEA) by using PCR.