

Influence of Ventilation Modes on Cerebral Blood Flow Measurements of Intra- and Extracranial Arteries in Preterm Infants with Respiratory Distress Syndrome

Thesis Submitted for partial fulfillment of MD degree in Pediatrics

By Yasmin Aly Farid Mohamed Aly

M.B.B.Ch. (2006) M.Sc (2011) Faculty of Medicine, Ain Shams University

Supervised by

Prof. Mohamed Sami El Shimi

Professor of Pediatrics Faculty of medicine - Ain Shams University

Prof. Nehal Mohamed El Raggal

Professor of Pediatrics Faculty of medicine - Ain Shams University

Prof. Hanan Mohamed Issa

Professor of Radiodiagnosis Faculty of medicine - Ain Shams University

Dr. Ghada Ibrahim Gad

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Maha Mohamed Hassan

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

تأثير طرق التنفس الصناعى على تدفق الدم فى الشرايين المخية داخل وخارج الجمجمة فى حديثي الولادة المبتسرين المصابين بمتلازمة صعوبة التنفس

رسالة توطئة للحصول على درجة الدكتوراة في طب الأطفال

مقدمتامن

الطبيبة/ ياسمين على فريد محمد على بكالوريوس الطب والجراحة ـ جامعة عين شمس (٢٠٠٦) ماحستهر طب الأطفال ٢٠١١

تحتاشراف

الأستاذ الدكتور/محمد سامي الشيمي

أستاذ طب الأطفال

كلية الطب جامعة عين شمس

الأستاذة الدكتورة/نهال محمد الرجال

أستاذ طب الأطفال

كلية الطب جامعة عين شمس

الأستاذة الدكتورة / حنان محمد عيسي

أستاذ الأشعة التشخيصية

كلية الطب جامعة عن شمس

الأستاذة الدكتورة / غادة إبراهيم جاد

أستاذ مساعد طب الأطفال

كلية الطب _ جامعة عن شمس

الأستاذة الدكتُورة / مها محمد حسن

أستاذ مساعد طب الأطفال كلمة الطب حامعة عين شمس

> كلية الطب جامعة عين شمس

Acknowledgment

First and foremost thanks to **ALLAH**, the Most Gracious and the Most Merciful for all the blessings He has given me.

I would like to acknowledge my senior supervisor, *Professor*, *Mohamed Sami El Shimi* Professor of Pediatrics, Ain Shams University, for giving me the honor to work under his supervision, with encouragement through this work.

Furthermore, I would also like to thank *Professor*, *Nehal Mohamed El Raggal* Professor of Pediatrics, Ain Shams University, for taking a lot of her time to precisely guide and review my work, trying to make it as complete and comprehensive as possible.

I would also like to thank *Professor*, *Hanan Mohamed Issa* Professor of Radiodiagnosis, Ain Shams University for her careful and kind supervision of this thesis.

In addition, I would like to express my gratitude to *Assistant Professor*, *Ghada Ibrahim Gad* Assistant Professor of Pediatrics, Ain Shams University and *Assistant Professor*, *Maha Mohamed Hassan* Assistant Professor of Pediatrics, Ain Shams University, for their efforts in producing this work.

I would like to thank *Dr*, *Amany Reda* Consultant of Neonatology Ain Shams University for her persistent support and encouragement that helped me to continue this work

Last but not least I would like to thank my family and colleagues for their indispensable help and support and all the patients in our unit for their cooperation. May Allah bless them all.

Yasmin Aly Farid

LIST OF CONTENTS

	Page
List of contents	i
List of abbreviations	ii
List of figures	ix
List of tables	xiii
Abstract	XV
Introduction	1
Aim of The Work	4
Review of literature	5
Respiratory distress syndrome	5
The mechanical ventilation	32
Cerebral hemodynamics in newborn	50
Patients and methods	85
Results	100
Discussion	139
Conclusion	157
Recommendations	159
Summary	160
References	165
Arabic summary	-

i

AC	Assist control				
ACA	Anterior cerebral artery				
ACOM	Anterior communicating				
ANOVA	One-way analysis of variance				
ASL-MRI	Arterial spin labeled perfusion magnetic				
ASL-WIKI	resonance imaging				
ATP	Adenosine tri-phosphate				
BPD	Bronchopulmonary dysplasia				
BUN	Blood urea nitrogen				
BW	Birth weight				
CBC	Complete blood picture				
CBF	Cerebral blood flow				
CBFV	Cerebral blood flow velocity				
CBG	Capillary blood gases				
CBV	Cerebral blood volume				
CCHD	Cyanotic congenital heart disease				
CDFI	Color Doppler flow imaging				
CDI	Color Doppler imaging				
CLD	Chronic lung disease				
CMV	Conventional Mechanical Ventilation				
CO_2	Carbon-Dioxide				
COE	Cerebral oxygen extraction				
CPAP	Continuous positive airway pressure				
Cr	Creatinine				
CRP	C- reactive protein				
CS	Caesarean section				
CTA	Carotid abnormalities				
CTS	Closed Tracheal suctioning				
CUS	Cranial ultrasound				
CXR	Chest X-ray				

DM	Diabetes Mellitus			
DSA	Digital subtraction angiography			
Edi	Electrical activity of the diaphragm			
EDV	End diastolic velocity			
ELBW	Extremely low birth weight			
FiO ₂	Fraction of inspired oxygen			
FLM	Fetal lung maturity			
GA	Gestational age			
GLH	Germinal layer hemorrhage			
GM	Germinal matrix			
GSH				
	Gray-scale histogram			
HCO ₃	Bicaronate			
HF	High Frequency			
HFFI	High frequency flow interrupter			
HFJV	High-frequency jet ventilation			
HFOV	High Frequency Oscillator Ventilator			
HFV	High frequency ventilation			
HHFNC	Heated, humidified and high-flownasal			
ппгис	cannula			
HIE	Hyoxic-ischemic encephalopathy			
HMD	Hyaline membrane disease			
HPI	Hemorrhagic parenchymal infarction			
ICA	Internal carotid artery			
ICH	Intracranial hemorrhage			
IMV	Intermittent mandatory ventilation			
IVH	Intraventricular hemorrhage			
L/S	Lecithin/Sphingomyelin			
LBC	lamellar body count			
LVO	Left ventricular output			
MABP	Mean arterial blood pressure			
MAP	Mean airway pressure			

MCA	Middle cerebral artery
MRI	Magnetic resonance imaging
MV	Mean velocity
NAVA	Neurally adjusted ventilator assist
NCPAP	Nasal continuous positive airway pressure
NEC	Necrotizing enterocolitis
NGT	Nasogastric tube
NICU	Neonatal intensive care units
NIH	National Institute of Health
NIPPV	Noninvasive nasal intermittent positive
NIPPV	pressure ventilation
NIR	Near infrared
NIRS	Near infrared spectroscopy
NPO	Nil per os
NVD	Normal vaginal delivery
OFC	Occipito frontal circumference
OTS	Open tracheal suctioning
PaCO ₂	Arterial carbon dioxide tension
PaO ₂	Arterial oxygen tension
PAV	Proportional assist ventilation
PCA	Posterior cerebral artery
PCOM	Posterior communicating
PCV	Packed cell volume
PDA	Patent ductus arteriosus
PE	Pre-eclampsia
PEEP	Positive end expiratory pressure
PET	Positron emission-tomography
PFO	Patent foramen ovale
PGE ₂	Prostaglandin E2
PI	Pulsatility index
PIP	Peak inspiratory pressure

PLV	Pressure - Limited Ventilation			
PMA	Postmenstrual age			
PPHN	Persistent pulmonary hypertension			
PROM	Premature rupture of membrane			
PRVC	Pressure- regulated volume control			
PSV	Pressure support ventilation			
PSV	Peak systolic velocity			
PVE	Periventricular echodensities			
PVHI	Periventricular venous hemorrhagic infarction			
PVL	Periventricular leukomalacia			
RBS	Random blood sugar			
RCT	Randomized control trial			
RDS	Respiratory distress syndrome			
RI	Resistive Index			
ROP	Retinopathy of prematurity			
RR	Respiratory rate			
SctO2	Mixed venous saturation			
SIMV	Synchronized intermittent mandatory			
SINIV	ventilation			
SP	Surfactant-specific proteins			
SpO_2	O ₂ saturation by pulse oximtery			
SVC	Superior vena cava			
TAmax	Time average maximum velocities			
TCPL	Time-cycled pressure limited			
Ti	Inspiratory time			
TTN	Transient tachypnea of the newborn			
UOP	Urinary output			
US	Ultrasound			
UTI	Urinary tract infection			
V/Q	Ventilation perfusion			
VEGF	vascular endothelial growth factor			

VG	Volume guarantee
VILI	Ventilator-induced lung injury
VLBW	Very low birth weight
VT	Volume-targeted
VTV	Volume-targeted ventilation
WBC	white blood cells
WM	White matter
ΔCBV	Change in cerebral blood volume

LIST OF FIGURES

Fig. No	o. Title	Page
1	Schematic outlines of the pathology of respiratory distress syndrome (RDS)	15
2	Microscopic appearance of lungs of an infant with respiratory distress syndrome. Hematoxylin and	16
3	eosin stain shows hyaline membranes (pink areas) Radiological grading of RDS	21
4	Pressure waveform for both volume- and pressure- limited breaths	43
5	Heated, Humidified, High-Flow Nasal Cannula. Optiflow TM Junior Nasal Cannula	49
6	Circle of Willis	55
7	Transcranial US showing grade 1 intracranial hemorraghe	71
8	Transcranial US showing grade 2 intracranial hemorraghe	72
9	Transcranial US showing grade 3 intracranial hemorraghe	72
10	Transcranial US showing grade 4 intracranial hemorraghe	73
11	Transcranial US showing PVL grade 1	75
12	Transcranial US showing PVL grade 2	75
13	Transcranial US showing PVL grade 3	76
14	Transcranial US showing PVL grade 4	76
15	Positions of the near-infrared spectroscopy (NIRS) sensors	84
16	New Ballard scoring	90
17	Mean hemoglobin level in the four study groups. Group 1, SIMV; Group 2; HFV; Group 3, CPAP;	110

Fig. No	o. Title	Page
	Group 4, Control	
18	Mean hematocrit in the four study groups. Group	110
	1, SIMV; Group 2; HFV; Group 3, CPAP; Group	
	4, Control	
19	Mean pH in the four study groups. Group 1,	112
	SIMV; Group 2; HFV; Group 3, CPAP; Group 4,	
	Control	
20	Mean PaCO2 in the four study groups. Group 1,	112
	SIMV; Group 2; HFV; Group 3, CPAP; Group 4,	
21	Control	112
21	Mean HCO3- concentration in the four study	113
	groups. Group 1, SIMV; Group 2; HFV; Group 3, CPAP; Group 4, Control	
22	Mean SpO2 in the four study groups. Group 1,	113
22	SIMV; Group 2; HFV; Group 3, CPAP; Group 4,	113
	Control	
23	Average PI as measured from the ACA, MCA, or	125
	ICA in the four study groups. Group 1, SIMV;	
	Group 2; HFV; Group 3, CPAP; Group 4, Control	
24	Average RI as measured from the ACA, MCA, or	126
	ICA in the four study groups. Group 1, SIMV;	
	Group 2; HFV; Group 3, CPAP; Group 4, Control	
25	Average TAmax as measured from the ACA,	127
	MCA, or ICA in the four study groups. Group 1,	
	SIMV; Group 2; HFV; Group 3, CPAP; Group 4,	101
26	: Neck US Cross section view in preterm neonate	134
27	neck	124
27	Transcranial US view in preterm neonate sagittal	134
28	and temporal view Neck US: Cross section view in preterm neonate	135
20	on HFV showing ICA Doppler indices	133

Fig. No	o. Title	Page
29	Transcranial US in preterm neonate on HFV	135
	sagittal and temporal views showing ACA and	
	MCA Doppler indices	
30	Neck US: Cross section view in preterm neonate	136
	on SIMV showing ICA Doppler indices	
31	Transcranial US in preterm neonate on SIMV	136
	sagittal and temporal views showing ACA and	
	MCA Doppler indices	
32	Neck US: Cross section view in preterm neonate	137
	on CPAP showing ICA Doppler indices	
33	Transcranial US in preterm neonate on CPAP	137
	sagittal and temporal views showing ACA and	
	MCA Doppler indices	
34	Transcranial US in preterm neonate not ventilated	136
	(control) sagittal and temporal views showing	
	ACAand MCA Doppler indices	

LIST OF TABLES

Table.	Title	Dogo
No.	Title	Page
1	The advantages and disadvantages of the pressure-limited TCPL ventilators	40
2	Showing differences between VTV and PLV	42
3	Down's score	86
4	Patients' characteristics in the four study groups	101
5	Neonatal biometric measures in the four study groups	102
6	Obstetric history of the mothers in the four study groups	103
7	Average temperature, mean arterial blood pressure, and urine output in the four study groups	105
8	Relevant clinical findings in the four study groups	106
9	Results of laboratory work-up in the four study groups	108
10	Average values of Capillary blood gases analysis in the four study groups	111
11	RDS grade by chest roentgenography and relevant echocardiographic and transcranial ultrasound findings in the four study groups	114
12	Feeding route and type of milk in the four study groups	116
13	Need for inotropes, vasopressors and	118