Assessment of the Role of Speckle Tracking Echocardiography in Targeting the Left Ventricular Lead Position in Patients Undergoing Cardiac Resynchronization Therapy

Thesis

Submitted in partial fulfillment of Doctorate degree (MD) in Cardiology

By

Ahmed Yehia Ramadan Salama

M.B.B.Ch, M.Sc. Cardiology Faculty of Medicine, Ain shams University

Under supervision of

Dr. Azza Abdallah El Fiky

Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Hayam El Damnhoury

Professor of Cardiology
Faculty of Medicine, Ain Shams University

Dr. Walaa Adel Abdel Halim

Assistant Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Sameh Samir Raafat Naguib

Assistant Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed Abou Bakr El Missiri

Lecturer of Cardiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

بيني لِللهُ الرَّجْمِزَ الرَّجِينَ مِ

سورة طه الآيه رقم ۱۱۶

Acknowledgement

First of all, all gratitude is due to **Allah** for blessing this work, until it has finally reached its end.

Really I can hardly find the words to express my gratitude to **Dr. Azza Abdallah El Fiky,** Professor of Cardiology, faculty of medicine, Ain Shams University, for her supervision, continuous help, sincere encouragement throughout this work and the tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance.

I would like also to express my deep appreciation and gratitude to **Dr. Hayam El Damnhoury**, Professor of Cardiology, faculty of medicine, Ain Shams University, for her continuous directions and support especially the procedural aspect of this study.

Really I can hardly find the words to express my gratitude to **Dr. Walaa Adel Abdel Halim,** Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work. I really appreciate her patience while reviewing the cases of this study.

Great thanks to: **Dr. Sameh Samir Raafat Naguib**Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University. He has been always by my side.

I feel much obliged to: **Dr. Ahmed Mohamed Abou Bakṛ El Missiri,** Lecturer of Cardiology, Faculty of Medicine, Ain Shams
University, I thank him for his encouragement, he has really benefited me a lot.

Last but not least, I dedicate this work to my daughter Rokaya.

Ahmed Yehia Ramadan Salama

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	vii
Introduction and Aim of the Work	1
Review of Literature	4
Chapter I	
Heart Failure and Dyssynchrony	4
Chapter II	
Cardiac Resynchronization Therapy	16
Chapter III	
Large Randomized Trials Conducted on Cardiac	
Resynchronization Therapy	26
Chapter IV	
Response to Cardiac Resynchronization Therapy	46
Chapter V	
Strain Imaging	49
Chapter VI	
Role of Non-invasive Assessment of Mechanical	
Dyssynchrony beyond the Current Guidelines	73
Patients and Methods	88
Results	118
Discussion	159
Limitations	171
Summary	172
Conclusions	175
Recommendations	176
References	177
Appendix	205
Arabic Summary	

List of Abbreviations

2D Two-dimensional 3D Three-dimensional

American College of Cardiology/American ACC/AHA:

Heart Association

AV Atrio-ventricular AVC Aortic valve closure AVO : Aortic valve opening

CARE-HF : Cardiac Resynchronization Heart Failure

Trial

CARE-HF: Cardiac Resynchronization Heart Failure

COMPANION: Comparison of Medical Therapy, Pacing,

and Defibrillation in Heart Failure

CONTAK-CD: Cardiac Resynchronization Therapy for the

Treatment of Heart Failure in Patients with Intraventricular Conduction Delay Malignant Ventricular Tachyarrhythmias

CRT Cardiac Resynchronization Therapy

Cardiac Resynchronization Therapy with a CRT-D

defibrillator

CRT-P Resynchronization Therapy Cardiac

pacing

Doppler tissue imaging DTI

ECG Electrocardiogram EF **Ejection fraction**

Effective regurgitant orifice area **EROA**

ESPVR End-systolic pressure-volume relationship

Food and Drug Administration FDA

HF Heart failure HR Hazard ratio

Inter-ventricular mechanical delay **IVMD**

LA Left atrium

Left anterior oblique LAO

LBBB Left bundle branch block

List of Abbreviations (Cont.)

LV : Left ventricle

LVEDD : LV end-diastolic dimensions
LVEDV : LV end-diastolic volumes
LVESD : LV end-systolic dimensions
LVESV : LV end-systolic volumes
LVP : Left ventricular pressure

LVPEP : Left-ventricular pre-ejection period

MADIT-CRT: Multicenter Automatic Defibrillator

Implantation Trial with Cardiac

Resynchronization Therapy

MIRACLE: Multicenter Insync Randomized Clinical

Evaluation

ms : Milliseconds

MUSTIC : Multisite Stimulation in Cardiomyopathies

Study

NYHA : New York Heart AssociationOMT : Optimal medical therapy

PATH-CHF: Pacing Therapies In Congestive Heart

Failure

RAFT : Resynchronization/ Defibrillation for

Ambulatory Heart Failure Trial

RV : Right ventricle

RVPEP : Right-ventricular pre-ejection period

SPECT/PET: Single-photon emission computed

tomography/ positron emission tomography

SPWMD : Septal-to-posterior wall motion delay

TDI : Tissue Doppler imaging

TMPG : Trans-mitral pressure gradientTSI : Tissue synchronization imagingTSI : Tissue synchronization imaging

VF : Ventricular fibrillation

VT : Ventricular tachyarrhythmias

List of tables

Table	Title	Page
1	Observational trials of cardiac resynchronization therapy in heart failure	27
2	Endpoints, design, and main findings of randomized clinical trials evaluating CRT in heart failure	28
3	Description of demographic and clinical characteristics among cases	119
4	Description of clinical parameters at baseline among all cases	121
5	QRS complex duration among all patients at baseline	121
6	LV lead position in a tributary of the coronary sinus among all cases	122
7	Description of echocardiographic findings at baseline among all cases	123
8	Distribution of the most delayed activated region by speckle tracking echocardiographic analysis	124
9	Comparison between the 2 study groups as regards baseline demographic and clinical characteristics	125
10	Comparison between the 2 study groups as regards clinical parameters at baseline	127
11	Comparison between QRS complex duration between the 2 study groups at baseline	128
12	Comparison between the two groups as regards the LV lead position in one of the coronary sinus tributaries	129

List of tables (Cont.)

Table	Title	Page
13	Comparison between the 2 study groups	131
	as regards echocardiographic findings at	
	baseline	
14	The most delayed activated region by	133
	speckle tracking echocardiographic	
1.5	analysis	124
15	Descriptions of clinical findings at	134
16	follow up among all cases Comparison between baseline and	135
10	follow up NYHA class and six min walk	133
	distance among all cases	
17	Descriptions of echocardiographic	136
	findings at follow up among all cases	100
18	Comparison between baseline and	137
	follow up LV dimensions and volumes	
	among all cases	
19	Comparison between baseline and	137
	follow up ejection fraction, LA diameter	
	among all cases	
20	Comparison between baseline and	138
	follow up MR grade among all cases	
21	Description of delta change in	139
	echocardiographic findings at follow up	
22	among all cases	120
22	Description of clinical,	139
	echocardiographic, combined response and mortality among all cases	
23	Comparison between the 2 study groups	140
	as regards clinical findings at follow up	1 10
24	Comparison between the 2 study groups	142
-	as regards echocardiographic findings at	
	follow up	

List of tables (Cont.)

Table	Title	Page
25	Comparison between the 2 study groups as regards the delta change in LVEDD, LVESD, LVESV and LVEDV	144
26	Comparison between the 2 study groups as regards MR grade at follow up	145
27	Comparison between the 2 study groups as regards clinical, echocardiographic and combined responses to CRT and mortality	146
28	Comparison between baseline and follow up NYHA class, six min walk distance, ejection fraction, LA diameter and MR grade among Group A cases	149
29	Comparison between baseline and follow up NYHA class, six min walk distance, ejection fraction, LA diameter and MR grade among Group B cases	151
30	Logistic regression to study independent factors affecting clinical response	153
31	Logistic regression to study independent factors affecting echocardiographic response	154
32	Correlation between baseline global longitudinal strain % and ejection fraction (EF) obtained by auto EF method	155
33	Correlation between follow up global longitudinal strain % and ejection fraction (EF) obtained by auto EF method	156

List of tables (Cont.)

Table	Title	Page
34	Comparison between male and female	157
	gender as regards response to CRT	
35	Comparison between patients with and without established ischemic heart disease as regards response to CRT	157
36	Comparison between patients with and without intraventricular mechanical dyssynchrony as regards response to CRT	158
37	Comparison between patients with and without interventricular mechanical dyssynchrony as regards response to CRT	158

List of Figures

Fig.	Title	Page
1	Diffusion tensor magnetic resonance imaging-based estimates of fiber inclination angle in a canine heart	8
2	Plot of instantaneous circumferential strain at different regions across a short-axis section of the mid-LV in a dyssynchronous heart during early (solid line) and late (dashed line) systole	13
3	Pathophysiology of ventricular dyssynchrony and proposed mechanisms of action for cardiac resynchronization therapy	18
4	Mechanism of ventricular remodeling due to left bundle branch block	21
5	Indications for CRT in patients in sinus rhythm from the European Guidelines 2013	25
6	CARE-HF study results	42
7	M-mode echocardiogram at baseline (left) and 6 months (right) after cardiac resynchronization therapy	48
8	Transthoracic apical four-chamber view at baseline (top) and after cardiac resynchronization therapy (bottom)	49
9	Relationship between QRS duration and left ventricular dyssynchrony	52
10	Strain in three dimensions	62
11	Representation of the 3 main components of the myocardial strain	64
12	Diastolic and systolic images of the heart	64
13	Acoustic speckle tracking	67

Fig.	Title	Page
14	Velocity estimation by speckle tracking	67
15	Angle independency of non-Doppler 2-dimensional (2D) strain imaging	68
16	Speckle-tracking echocardiographic analysis of myocardial deformation showing measurements of radial strain	70
17	Speckle-tracking echocardiographic analysis of myocardial deformation showing measurements of circumferential strain	71
18	Speckle-tracking echocardiographic analysis of myocardial deformation showing measurements of longitudinal strain	72
19	Patient with LBBB and abnormal SPWD of 400 milliseconds	75
20	M-mode at mid-ventricular level (panel A) and color-DTI M- mode (panel B) demonstrating a septal-to-posterior wall delay of 180 milliseconds	76
21	Upper image	77
22	Upper image: Diastolic mitral regurgitation present in a heart failure patient with LBBB	78
23	Pulsed-wave Doppler from RV outflow tract (upper image) and LV outflow tract (lower image) demonstrating an IVMD of more than 40 milliseconds)	79

E:~	List of Figures (Cont.)	Daga
Fig.	Title	Page
24	Intra-ventricular dyssynchrony assessment by measuring the time difference between the peak myocardial systolic velocities of the septal (yellow) and lateral (green) wall on colour-coded tissue Doppler images. Event timing is indicating aortic valve opening (AVO) and aortic valve closure (AVC) to prevent measuring velocity peaks outside the ejection phase. A time difference of 105 milliseconds indicates significant intra-ventricular	80
25	dyssynchrony Radial strain curves derived from speckle tracking of a left ventricular short-axis standard 2-D echocardiogram	83
26	Two-Dimensional Speckle Tracking Apical view of the left ventricle demonstrating 2-dimensional speckle tracking for radial strain assessment of dyssynchrony	83
27	From a full volume 3D dataset (panel A), regional time-volume curves can be derived; each color represents one of the 17 left ventricular segments (panel B)	85
28	Example of phase analysis with gated myocardial perfusion SPECT	86
29	Minnesota living with heart failure Questionnaire (MLHFQ)	91
30	Cardiac Rehabilitation Clinic at Ain Shams University Hospital	93

Fig.	Title	Page
31	2D auto ejection fraction, LV end systolic volume, LV end diastolic volume	95
32	M-mode showing left atrial diameter	96
33	AVO and AVC in three consecutive cardiac cycles	97
34	Measurement of LVPEP	98
35	Measurement of RVPEP	99
36	2-D color DTI images from each of the apical 4-chamber (A), apical 2-chamber (B) and apical long-axis (C) views, as well as, from another patient where each wall was acquired separately due to a dilated LV (here it is the lateral wall) (D)	103
37	Off-line analysis of the acquired 2-D color DTI images from each of the apical 4-chamber (A), apical 2-chamber (B) and apical long- axis (C) views	104
38	A specially designed template using Microsoft Excel for calculating the different dyssynchrony indices	105
39	Radial strain curves and time to peak radial strain in milliseconds in patient no. 3	107
40	Bull's eye map showing average global peak longitudinal strain in patient no. 50. It is shown to be -7.1%	108
41	Longitudinal strain curves and bull's-eye plots showing segmental peak systolic longitudinal strain in patient no. 15	111

E:~	Title	Dana
Fig.	Title	Page
42	Right anterior oblique (RAO) fluoroscopic projection showing the LV lead in a mid left ventricular position. The 2 oblique lines divide the LV cavity into basal, mid and apical position in a baso-apical direction in the RAO view	113
43	A coronary sinus venogram in the Left anterior oblique (LAO) fluoroscopic projection showing a posterolateral tributary of the coronary sinus in patient number 40 during CRT device implantation	114
44	Left anterior oblique (LAO) fluoroscopic projection showing implantation of the atrial lead, the right ventricular lead and the left ventricular lead in patient number 40	114
45	Left anterior oblique (LAO) fluoroscopic projection showing the LV lead in a lateral tributary of the coronary sinus in patient number 48	115
46	Left lateral fluoroscopic projection showing the LV lead in a lateral tributary of the coronary sinus in patient number 48	115
47	Distribution of risk factors among cases	120
48	Comparison between group A and group B regarding the presence of HTN	126
49	Comparison between group A and group B regarding the presence of IHD	126
50	Comparison between the 2 study groups as regards baseline NYHA class	127
51	Comparison between the 2 study groups as regards baseline six minute walk distance	128
52	Comparison between the two groups as regards the LV lead position in one of the coronary sinus tributaries	130