# A comparative study between different types of umbilical cord stem cells in treatment of experimental diabetic rats

A thesis submitted for the partial fulfillment of M.Sc. Degree in Pharmaceutical Sciences (Biochemistry)

#### <u>By</u>

## Rasha Farouk El-Demerdash

Teaching Assistant of Biochemistry, Faculty of Pharmacy Misr International University

### **Under supervision of**

#### Prof. Dr. Hala Osman El-Mesallamy

Professor of Biochemistry
Vice Dean for Postgraduate Studies and Research
Faculty of Pharmacy, Ain Shams University

#### Prof. Dr. Lamiaa Nabil Hammad

Professor of Biochemistry Head of Pharmacology and Toxicology Department Faculty of Pharmacy, Misr International University

#### Dr. Mohamed Mostafa Mohamed Kamal

Lecturer of Biochemistry Biochemistry Department Faculty of Pharmacy, Ain Shams University

> Biochemistry Department Faculty of Pharmacy Ain Shams University 2014

## دراسة مقارنة بين أنواع مختلفة من خلايا الحبل السري الجذعية في علاج جرذان التجارب المصابة بمرض السكر

رسالة توطئة للحصول على درجة الماجيستير في العلوم الصيدلية (تخصص كيمياء حيوية)

## مقدمة من

تحت إشراف أ.د. هالة عثمان المسلمي

أستاذ الكيمياء الحيوية وكيل الكلية للدراسات العليا والبحوث كلية الصيدلة - جامعة عين شمس

### أد لمياء نبيل حماد

استاذ الكيمياء الحيوية رئيس قسم الادوية والسموم كلية الصيدلة - جامعة مصر الدولية

### د. محمد مصطفی محمد کمال

مدرس الكيمياء الحيوية قسم الكيمياء الحيوية كلية الصيدلة -جامعة عين شمس

> قسم الكيمياء الحيوية كلية الصيدلة جامعة عين شمس ٢٠١٤



صَدَقِ اللهُ العِيَظيمَ

#### **ACKNOWLEDGEMENTS**

First and foremost, Thanks are due to Allah.

I am much honored to have **Prof. Dr. Hala El-Mesallamy**, Vice Dean for Postgraduate Studies and Research, Faculty of Pharmacy, Ain-Shams University, as my supervisor. She has showed me different ways to approach research problems and the need to be persistent to accomplish any goal. I would like to thank her for her active supervision, constructive criticism, insightful comments, guidance throughout the work and efforts in revising the manuscript. I am indebted for Dr. Hala the proposal of the point, enlightening thoughts, and general encouragement.

My deepest gratitude is to my supervisor **Prof. Dr. Lamiaa Hammad**, Head of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, for her continuous support. She has been always there to listen and to give advice. She has taught me how to have self-confidence especially when I doubted myself, and brought out the best of me. Without her encouragement, constant guidance and her tender loving care, I could not have finished this dissertation. Dr. Lamiaa is and will always be a guide and a mentor.

Words cannot express my deep gratitude and sincere appreciation to my, **Dr. Mohamed Mostafa Kamal**, Lecturer of Biochemistry, Faculty of Pharmacy, Ain-Shams University. I have been amazingly fortunate to have asupervisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. I am grateful to him for holding me to a high research standard and enforcing strict validations for each research result, and thus teaching me how to do research. Dr. Mohamed taught me how to question thoughts and express ideas. His patience and support helped me overcome many crisis situations and finish this dissertation. I hope that one day I would become as good an advisor to my students as Dr. Mohamed has been to me.

I am grateful to **Prof. Dr. Adel M. Bakeer**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his kind help in performing histopathological studies and interpretation of their results. Also, I would like to extend my cordial appreciation to **Dr. Abd El-Latif El-Kholy**, Assistant Professor of Gynecology, Faculty of Medicine, Ain-Shams University, for his generous help, and his unlimited effort in collecting the required umbilical cord blood samples. Also, I am thankful to **Dr. Rabab Hawary**, Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for the generous help in using the flowcytometry analysis unit.

I would like to offer my heartfelt gratitude to my colleague **Dina Hamada**, Assistant Lecturer of Biochemistry, Faculty of Pharmacy, Ain-Shams University, not only for providing Wharton Jelly cells, but also for her encouragement, insightful comments, and for listening to my complaints and frustrations.

Last, but not least, I thank my parents, for giving me life in the first place, educating me, their unconditional support and encouragement to pursue my interests, even when the interests went beyond boundaries of language, field and geography. I am grateful to my **husband**, son and siblings who have shared me all the long journey and have been there for me all along the road ahead.

## TABLE OF CONTENTS

| Subjects                                                                     |           |
|------------------------------------------------------------------------------|-----------|
| <b>Publications Related to the Thesis</b>                                    | III       |
| List of Abbreviations                                                        | V         |
| List of Figures                                                              | VII       |
| List of Tables                                                               | IX        |
| Introduction and Aim of Work                                                 | 1         |
| Review of Literature                                                         |           |
| I. Diabetes mellitus (DM)                                                    | 4         |
| A. Definition and epidemiology                                               | 4         |
| B. Classification                                                            | 4         |
| C. Signs and symptoms                                                        | 7         |
| D. Treatment                                                                 | 7         |
| II. Stem cell                                                                | 9         |
| A. Stem cell therapy                                                         | 9         |
| B. Classification of stem cells according to their proliferation and potency | 11        |
| C. Classification of stem cells according to their source's developing stage | 13        |
| III. Umbilical cord (UC) stem cells                                          | 16        |
| A. Sources of stem cells within the UC                                       | 17        |
| B. Advantages of UC stem cells                                               | 19        |
| IV. Mesenchymal stem cells' (MSCs) therapy                                   | 21        |
| A. Sources and definition by International                                   | 21        |
| Society for Cellular Therapy (ISCT)                                          | <b>41</b> |
| B. Therapeutic potential of MSCs in many                                     | 23        |
| diseases                                                                     | 23        |
| C. Role of MSCs in type 1 DM therapy                                         | 25        |

| Materials and Methods                                    | 30         |
|----------------------------------------------------------|------------|
| I. Isolation of human umbilical cord blood               | 32         |
| mononuclear cells (UCB-MNCs), culture and                |            |
| expansion of UCB-MSCs                                    |            |
| II. Culture and expansion of cryopreserved               | 39         |
| Wharton's Jelly (WJ)-MSCs                                | 3)         |
| III. Characterization of the isolated and cultured cells | 39         |
| IV. Differentiation of UCB-MSCs and WJ-MSCs              | 42         |
| into insulin producing cells (IPCs) in vitro             | 72         |
| V. Assessment of the in vitro differentiation            | 44         |
| potential of UCB-MSCs and WJ-MSCs into IPCs              | 77         |
| VI. Assessment of therapeutic potential of UCB-          | 55         |
| MSCs and WJ-MSCs in streptozotocin (STZ)                 | 33         |
| induced diabetic rats (In vivo)                          |            |
| · /                                                      | 58         |
| VII. Statistical analyses                                | 50         |
| Results                                                  | <b>7</b> 0 |
| I. Isolation of human UCB-MNCs, culture and              | 59         |
| expansion of UCB-MSCs and cryopreserved WJ-              |            |
| MSCs                                                     |            |
| II. Characterization of the of the isolated and          | 59         |
| cultured cells                                           |            |
| III. Assessment of in vitro differentiation of UCB-      | 65         |
| MSCs and WJ-MSCs into IPCs                               |            |
| IV. The therapeutic potential of UCB-MSCs and WJ-        | 73         |
| MSCs in STZ-induced diabetic rats                        |            |
| Discussion                                               | 78         |
| Summary and Conclusions                                  | 90         |
| Recommendations                                          | 94         |
|                                                          |            |
| References                                               | 95         |
| Appendix                                                 | 117-132    |
| Arabic Summary                                           |            |

#### **Publications related to the Thesis**

## I. Poster presented in 20th ISCT Annual Meeting April 23-26, 2014, Paris, France



#### Cytotherapy

Volume 16, Issue 4, Supplement, April 2014, Pages 866

20th Annual ISCT Meeting



Comparing umbilical cord blood stem cells and wharton's jelly mesenchymal stem cells regarding their differentiation potential to insulin producing cells

M.M. Kamal<sup>1</sup>, H.O. El-Mesallamy<sup>1</sup>, L.N. Hammad<sup>2</sup>, R.F. El-Demerdash<sup>2</sup>

Show more

DOI: 10.1016/j.jcyt.2014.01.241

Get rights and content

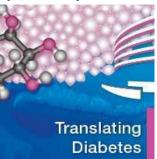
#### Introduction

The number of patients suffering from Diabetes Mellitus (DM) is growing in an alarming rate which makes DM the most prevalent and serious metabolic disease. Now, cell therapy treatment options for diabetic patients are under extensive study. Interestingly, umbilical cord (UC) has been proved to be a good source of mesenchymal stem cells (MSCs), namely from umbilical cord blood (UCB-MSCs) and Wharton's jelly (WJ-MSCs).

#### Objectives

We thought to investigate the difference between these 2 important banking sources of stem cells and to compare their differentiation potentials towards insulin producing cells (IPCs) in vitro and their potential use for treatment of streptozotocin (STZ) induced diabetic rats invivo.

#### Materials and methods


Both UCB-MSCs and WJ-MSCs were isolated from UC and expanded for several passages. Expression of typical MSCs surface antigens and adipogenic differentiation potential as an example of mesenchymal lineage was used to verify MSCs identity. Afterwards, both UCB-MSCs and WJ-MSCs were induced to differentiate into IPCs, then the differentiated cells were assessed both genetically by determining the expression of Nestin, as stem cell marker and key markers of mature  $\beta$ -cells such as Pdx-1, Mafa and Nio/2.2 using qRT-PCR, and functionally by measuring insulin secretion after glucose challenge (Glucose stimulated insulin secretion; GSIS); a hall mark of functional  $\beta$ -cells.

#### Results and conclusions

WJ appeared to be a much more homogenous and potential source for MSCs as compared to UCB. Interestingly, both UCB-stern cells and WJ-MSCs were successfully differentiated to IPCs. Yet, the resulting IPCs from WJ-MSCs were to a limited extent functioning better than those obtained from UCB-MSCs. Both cell types were able to decrease fasting blood glucose level transiently in STZ induced diabetic mice. Taken together, we can conclude that WJ could represent a potential source of cells in the field of DM cell therapy rather than UCB.

Copyright@ 2014 Published by Elsevierino.

## II. Poster presented in EMBO/EMBL Symposium-Translating Diabetes April 30-May 3, 2014, Heidelberg, Germany



## The generation of insulin producing cells from Wharton's jelly mesenchymal stem cells in comparison to umbilical cord blood mesenchymal stem cells

*Introduction:* The number of patients suffering from Diabetes Mellitus (DM) is growing in an alarming rate which makes DM the most prevalent metabolic disease. Now, cell therapy treatment options for diabetic patients are under extensive study. Interestingly, umbilical cord (UC) has been proved to be a good source of mesenchymal stem cells (MSCs), namely; umbilical cord blood (UCB-MSCs) and Wharton's jelly (WJ-MSCs).

*Objectives:* we thought to investigate the difference between these 2 important banking sources of stem cells and to compare their differentiation potentials towards insulin producing cells (IPCs) invitro and their potential use for treatment of streptozotocin-induced diabetic rats invivo.

Materials and methods: Both UCB-MSCs and WJ-MSCs were isolated from UC and expanded for several passages. Expression of typical MSCs surface antigens and adipogenic differentiation potential as an example of mesenchymal lineage was used to verify MSCs identity. Afterwards, both UCB-MSCs and WJ-MSCs were induced to differentiate into IPCs, then the differentiated cells were assessed both genetically by determining the expression of Nestin, as stem cell marker and key markers of mature  $\beta$ -cells such as Pdx-1, Mafa and Nkx2.2 using qRT-PCR, and functionally by measuring insulin secretion after glucose challenge (Glucose stimulated insulin secretion; GSIS); a hall mark of functional  $\beta$ -cells.

**Results and conclusions:** WJ appeared to be a much more homogenous and potential source for MSCs as compared to UCB. Interestingly, both UCB-stem cells and WJ-MSCs were successfully differentiated to IPCs. Yet, the resulting IPCs from WJ-MSCs were to a limited extent functioning better than those from UCB-MSCs. Both cell types were able to decrease fasting blood glucose level transiently in diabetic rats, yet WJ-MSCs showed an earlier more sustained effect. Taken together, we can conclude that WJ could represent a potential source of cells in the field of DM cell therapy rather than UCB.

#### LIST OF ABBREVIATIONS

| ANOVA       | Analysis of variance                       |
|-------------|--------------------------------------------|
| ASCs        | Adult stem cells                           |
| BM          | Bone marrow                                |
| BW          | Body weight                                |
| CB          | Cord blood                                 |
| CD          | Clusters of differentiation                |
| cDNA        | Complementary deoxy nucleic acid           |
| Ct          | Cycle threshold                            |
| DM          | Diabetes mellitus                          |
| <b>DMEM</b> | Dulbecco's modified Eagle's medium         |
| dNTP        | Deoxy nucleotide tri-phosphate             |
| ELISA       | Enzyme linked immuno-sorbent assay         |
| ESCs        | Embryonic stem cells                       |
| FACS        | Fluorescence-activated cell sorting        |
| FBG         | Fasting blood glucose                      |
| FBS         | Fetal bovine serum                         |
| FITC        | Fluorescein isothiocyanate                 |
| GDM         | Gestational diabetes mellitus              |
| GSIS        | Glucose stimulated insulin secretion       |
| GVHD        | Graft-versus-host disease                  |
| H&E         | Hematoxylin and eosin stain                |
| HG-         | High glucose- Dulbecco's modified Eagle's  |
| DMEM        | medium                                     |
| HG-KRB      | High glucose-Kreb's ringer bicarbonate     |
| HLA         | Human leukocyte antigen                    |
| HSCs        | Hematopoietic stem cells                   |
| IDDM        | Insulin dependent diabetes mellitus        |
| IDF         | International diabetes federation          |
| Ig          | Immunoglobulin                             |
| IPCs        | Insulin producing cells                    |
| IR          | Insulin resistance                         |
| ISCT        | International society for cellular therapy |
| Isl-1       | Insulin gene enhancer protein              |
| KRB         | Kreb's ringer bicarbonate                  |

| I C IIDD   | T 1 TZ 12 1 1 1                               |
|------------|-----------------------------------------------|
| LG- KRB    | Low glucose-Kreb's ringer bicarbonate         |
| LG-        | Low glucose-Dulbecco's modified Eagle's       |
| DMEM       | medium                                        |
| MafA       | V-maf musculoaponeurotic fibrosarcoma         |
|            | oncogene homolog                              |
| MHC        | Major histocompatibility complex              |
| MNCs       | Mononuclear cells                             |
| MSCs       | Mesenchymal stem cells                        |
| NA         | Nicotinamide                                  |
| Ngn-3      | Neurogenin-3                                  |
| NIDDM      | Non-insulin dependent diabetes mellitus       |
| P          | Passage                                       |
| PBS        | Phosphate-buffered saline                     |
| PCR        | Polymerase chain reaction                     |
| Pdx-1      | Pancreatic and deodenal homebox1              |
| PE         | Phycoerythrin                                 |
| Pen/Strep/ | Penicillin /streptomycin /amphotercin B       |
| Ampho      |                                               |
| qRT-PCR    | Quantitative reverse transcriptase polymerase |
|            | chain reaction                                |
| RNase      | Ribonuclease enzyme                           |
| RT         | Reverse transcriptase enzyme                  |
| STZ        | Streptozotocin                                |
| Taq        | Thermusaquaticus                              |
| UC         | Umbilical cord                                |
| UCB        | Umbilical cord blood                          |
| UCWJ       | Umbilical cord Wharton's jelly                |
| WHO        | World health organization                     |
| WJ         | Wharton's jelly                               |
| α-ΜΕΜ      | Alpha minimum essential medium                |

#### LIST OF FIGURES

| Figure<br>number | Figure title                             | Page |
|------------------|------------------------------------------|------|
| Figure (1)       | Pathogenesis of IDDM                     | 5    |
| Figure (2)       | Pathogenesis of NIDDM                    | 6    |
| Figure (3)       | Pluripotent stem cells are capable of    | 12   |
|                  | forming tissues originating in the three |      |
|                  | embryonic layers                         |      |
| Figure (4)       | Perinatal tissues                        | 15   |
| Figure (5)       | Compartments within the human UC         | 17   |
| Figure (6)       | Different sources of MSCs; MSCs can      | 22   |
|                  | be derived from several adult or infant  |      |
|                  | tissues                                  |      |
| Figure (7)       | Immunomodulatory effect of MSCs          | 24   |
| Figure (8)       | Different routes of MSCs /IPCs           | 27   |
|                  | administration in rats/ mice             |      |
| Figure (9)       | In vivo collection of human UCB          | 33   |
| Figure (10)      | Buffy coat at plasma/histopaque          | 34   |
|                  | interface after density gradient Ficoll  |      |
|                  | centrifugation of UCB                    |      |
| Figure (11)      | Filling the hemocytometer chamber        | 36   |
|                  | with cell sample diluted by trypan blue  |      |
| Figure (12)      | Standard calibration curve for insulin   | 54   |
| Figure (13)      | Phase contrast images of cultured UCB    | 60   |
|                  | cells (a): P0 & (b): P1                  |      |
| Figure (14)      | Phase contrast imagesof cultured WJ      | 60   |
|                  | cells (a): P0 & (b): P1                  |      |
| Figure (15)      | Immunophenotyping of (a):UCB-MNCs        | 63   |
|                  | and (b):UCB-MSCs and (c):WJ-MSCs         |      |
| Figure (16)      | Adipogenic differentiation of CB-MSCs    | 64   |
|                  | and WJ-MSCs                              |      |
| Figure (17)      | Phase contrast images of differentiated  | 65   |
|                  | UCB-MSCs and WJ-MSCs to their            |      |
|                  | control cells.                           |      |

| Figure (18)     | Relative mRNA expression of Nestin throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                | 66 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|----|
| Figure<br>(19a) | Relative mRNA expression of Pdx-1, throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                | 67 |
| Figure (19b)    | Relative mRNA expression of MafA throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                  | 67 |
| Figure<br>(19c) | Relative mRNA expression of Ngn-3, throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                | 68 |
| Figure<br>(19d) | Relative mRNA expression of Nkx2.2 throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                | 68 |
| Figure<br>(19e) | Relative mRNA expression of Isl-1 throughout the differentiation protocol of UCB-MSCs and WJ-MSCs into IPCs                 | 69 |
| Figure (20)     | Fold change of mRNA relative expression level of β-cells genes throughout the differentiation protocol of UCB-MSC into IPCs | 70 |
| Figure (21)     | Fold change of mRNA relative expression level of β-cells genes throughout the differentiation protocol of WJ-MSC into IPCs  | 70 |
| Figure (22)     | In vitro GSIS assay of differentiated UCB-MSCs and WJ-MSCs                                                                  | 72 |
| Figure (23)     | FBG levels of STZ-induced diabetic rats for 2 months post transplantation UCB-MSCs and WJ-MSCs                              | 74 |
| Figure (24)     | BW change of STZ-induced diabetic rats for 2 months post transplantation UCB-MSCs and WJ-MSCs                               | 75 |
| Figure (25)     | Histology of various organs in normal, diabetic and MSCs treated diabetic rats                                              | 77 |

## LIST OF TABLES

| Table      | Table title                             | Page |
|------------|-----------------------------------------|------|
| number     |                                         |      |
| Table (1)  | Preparation of complete α-MEM           | 41   |
| Table (2)  | Media throughout the 3 steps            | 43   |
|            | differentiation protocol of MSCs into   |      |
|            | IPCs                                    |      |
| Table (3)  | cDNA synthesis master mix volumes       | 48   |
| Table (4)  | qRT-PCR reaction mix                    | 49   |
| Table (5)  | Forward and Reverse primers used in     | 50   |
|            | qRT-PCR reaction                        |      |
| Table (6)  | CDs expression in UCB-MNCs, UCB-        | 62   |
|            | MSCs and WJ-MSCs                        |      |
| Table (A1) | Relative mRNA expression of Nestin      | 117  |
| . ,        | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A2) | Relative mRNA expression of Pdx-1       | 118  |
|            | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A3) | Relative mRNA expression of MafA        | 119  |
|            | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A4) | Relative mRNA expression of Ngn-3       | 120  |
|            | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A5) | Relative mRNA expression of Nkx2.2      | 121  |
|            | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A6) | Relative mRNA expression of Isl-1       | 122  |
|            | throughout the differentiation protocol |      |
|            | of UCB-MSCs and WJ-MSCs into IPCs       |      |
| Table (A7) | Levels of Insulin secreted from both    | 123  |
|            | differentiated UCB-MSCs and WJ-         |      |
|            | MSCs in response to in vitro glucose    |      |
|            | challenge                               |      |

| Table (A8) | FBG of diabetic/DMEM (control) rats      | 124 |
|------------|------------------------------------------|-----|
|            | group every 10 days interval for 2       |     |
|            | months post transplantation              |     |
| Table (A9) | FBG of diabetic/UCB-MSCs rats group      | 125 |
|            | every 10 days interval for 2 months post |     |
|            | transplantation                          |     |
| Table      | FBG of diabetic/WJ-MSCs rats group       | 126 |
| (A10)      | every 10 days interval for 2 months post |     |
|            | transplantation                          |     |
| Table      | BW of diabetic/DMEM (control) rats       | 127 |
| (A11)      | group every 10 days interval for 2       |     |
| , ,        | months post transplantation              |     |
| Table      | Changes in BW of diabetic/DMEM           | 128 |
| (A12)      | (control) rats group every 10 days       |     |
| , ,        | interval for 2 months post               |     |
|            | transplantation                          |     |
| Table      | BW of diabetic/UCB-MSCs rats group       | 129 |
| (A13)      | every 10 days interval for 2 months post |     |
|            | transplantation                          |     |
| Table      | Changes in BW of diabetic/UCB-MSCs       | 130 |
| (A14)      | rats group every 10 days interval for 2  |     |
|            | months post transplantation              |     |
| Table      | BW of diabetic/WJ-MSCs rats group        | 131 |
| (A15)      | every 10 days interval for 2 months post |     |
|            | transplantation                          |     |
| Table      | Changes in BW of diabetic/WJ-MSCs        | 132 |
| (A16)      | rats group every 10 days interval for 2  |     |
|            | months post transplantation              |     |