The Role of Vasopressors and Inotropes In Septic Shock

Essay

Submitted for Partial fulfillment of Master Degree in Critical Care Medicine

> Presented By: Waleed Elsayed Abdelfattah Shaheen (M.B., B.Ch, 2007)

> > Under the Supervision of:

Prof. Dr. Gehan Fouad Youssef

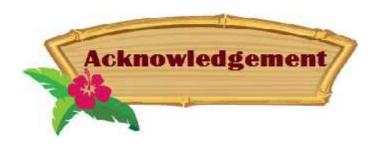
Professor of Anesthesia and Critical Care Medicine Faculty of Medicine, Ain Shams University

Dr. Mayar Hasan Elsersi

Lecturer of Anesthesia and Critical Care Medicine Faculty of Medicine, Ain Shams University

Dr. Hany Ahmed Abd Elkader

Lecturer of Anesthesia and Critical Care Medicine Faculty of Medicine, Ain Shams University


> Faculty of Medicine Ain Shams University 2014

يشم لتنا التحذ الحميز

وقل اعْمَلُوا فَسَيَرَى اللهُ عَمَلُكُمْ ورَسُولُهُ والمُؤْمِنُونَ

صدق الله العظيم

سورة التوبة آية (105)

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Gehan Fouad Youssef**, Professor of Anesthesia and Critical Care Medicine, Faculty of Medicine, Ain Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Mayar Hasan Elsersi**, Lecturer of Anesthesia and Critical Care Medicine, Faculty of Medicine, Ain Shams university for her valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Hany Ahmed Abd Elkader**, Lecturer of Anesthesia and Critical Care
Medicine, Faculty of Medicine, Ain Shams University, for his
invaluable help, fruitful advice, continuous support offered to
me and guidance step by step till this essay finished.

I want also to thank my family for supporting me throughout my life.

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Figures	iv
List of tables	iv
Introduction	1
Aim of the work	3
Chapter I:	
Incidence, Terminology and Pathophysiology of Septic Shock	4
Chapter II:	
Functional hemodynamic monitoring in septic patient.	27
Chapter III:	
Vasopressors and Inotropes in septic shock: Mechanism of action, Doses, Adverse effects and Their role in septic shock	56
Summary	98
References	
Arabia summary	

List of Abbreviations

ABP : Arterial Blood Pressure

ACCP : American College of Chest Physicians

ADH : Antidiuretic hormone

aPC : Activated form of Protein C
ATP : Adenosine Triphosphate
ATS : American Thoracic Society

C3 – C5 : Complement 3 - Complement 5

Ca2+ : Calcium

CAM : Cell Adhesion Molecules

cAMP : Cyclic Adenosine Monophosphate

CI : Cardiac Index

CNS : Central Nervous System

CO : Cardiac Output

COHb : Carboxyhaemoglobin

COMT : Catechol-O-Methyltransferase CPR : Cardio-Pulmonary Resuscitation

CSF : Cerebrospinal Fluid

CT : Computerized Tomography
CVP : Central Venous Pressure

CXR : Chest X-Ray

DNA : Deoxyribonucleic Acid ECG : Electrocardiographic

EGDT : Early Goal Directed Therapy

ESICM : European Society of Intensive Care Medicine

etCO2 : end-tidal CO2

FiO2 : Fraction Of Inspired Oxygen

FTc : Flow time corrected

h : Hour

HbO2 : Oxygenated Haemoglobin

HF : Heart Failure

ICAM-1 : Intercellular Adhesion Molecule-1

ICU : Intensive Care Unit IgE : Immunoglobulin E

List of Abbreviations (Cont.)

IL-1 : Interleukin-1 IM : Intra-Muscular

IP3 : Inositol Phosphates 3

IP3 and IP4 : Inositol Phosphates (IP3 And IP4 ITBV : Intrathoracic Blood Volume

IV : Intra-VenousK+ : PotassiumKg : Kilogram

Led : Light Emitting Diodes

LiDCO : Lithium Dilution Technique

LV : Left Ventricle

MAO : Monoamine Oxidase MAP : Mean Arterial Pressure

Mcg - μg : Microgram in : Minute mL : Milliliter

mmHg : Millimeters of mercury MOF : Multi-Organ Failure

NIBP : Non-Invasive Arterial Blood Pressure

NICO : Noninvasive Cardiac Output NIRS : Near Infra-Red Spectroscopy

NO : Nitric Oxide

OPS : Orthogonal Polarisation Spectral

PAC : Pulmonary Artery Catheter

PaCO2 : Partial Pressure of Carbon Dioxide In

Arterial Blood

PAI-1 : Plasminogen Activator Inhibitor-1

PAMPs : Pathogen-Associated Molecular Patterns

PaO2 : Partial Pressure Of Oxygen In Arterial Blood

PARP : Poly(ADP-ribose) Polymerase PCR : Polymerase Chain Reaction

PDI : Phosphodiesterase

PEA : Pulseless Electrical Activity

List of Abbreviations (Cont.)

PiCCO : Pulse-induced continuous cardiac output

PLC- : Phospholipase C-

PMNs : Polymorphonuclear Leukocytes PRRs : Pattern Recognition Receptors PVR : Pulmonary Vascular Resistance

PVV : Pulse Pressure Variation

rhAPC : Recombinant Activated Protein C

(drotrecogin alfa)

RNS : Reactive Nitrogen Species ROS : Reactive Oxygen Species

RV : Right Ventricle

SaO2 : Arterial Oxygen Saturation SBP : Systolic Arterial Pressure

SCCM : Society of Critical Care Medicine ScvO2 : Central Venous Oxygen Saturation

SDF : Sidestream Dark Field

SIRS : Systemic Inflammatory Response Syndrome

SIS : Surgical Infection Society

SpO2 : Pulse Oximetry

StO2 : Tissue Oxygen Saturation

SV : Stroke Volume

SVI : Stroke Volume Index

SvO2 : Mixed Venous Oxygen Saturation SVR : Systemic Vascular Resistance SVR : Stroke Volume Resistance SVT : Supra-Ventricular Tachycardia

SVV : Stroke Volume Variation

TEB : Thoracic Electric Bioimpedance

TED : Transesophageal Doppler

TF : Tissue Factor

TLRs : Toll-Like Receptors

TNF : Tumor Necrosis Factor Alpha TTE : Transthoracic Echocardiography

List of Abbreviations (Cont.)

V1 : Vasopressin 1

VASST : Vasopressin and Septic Shock Trial VCAM-1 : Vascular Cell Adhesion Molecule-1

VF : Ventricular FibrillationVO2 : Oxygen ConsumptionVT : Ventricular Tachycardia

Wbcs : White Blood Cells

: Alpha : Beta

List of Figures

Fig.	Title	Page
1.1	Relationship of Infective and Non-infective	5
	Processes and the Systemic Inflammatory	
	Response Syndrome (SIRS).	
1.2	Inflammatory Responses to Sepsis.	11
1.3	Pathophysiology of sepsis and multi-organ failure	20
1.4	Mechanisms of coagulopathy in sepsis.	22
2.1	The normal arterial pressure waveform and the effects of damping.	31
2.2	Pulse pressure variation and stroke volume variation.	36
2.3	The pulmonary artery catheter (PAC).	38
2.4	Pressure tracings obtained on insertion of a	39
	pulmonary artery catheter.	
2.5	An ideal thermodilution curve.	40
2.6	Normal oesophageal Doppler trace.	42
2.7	Hypovolaemia or response to vasopressor therapy.	43
2.8	Sepsis.	43
2.9	NICO sensor and Capnostat.	45
2.10	Measurement of impedance signal using four sets	51
	of paired sensors.	
2.11	Parasternal long axis for measuring LV function.	52
2.12	Orthogonal polarisation spectral (OPS) and Sidestream dark field(SDF) imaging devices.	54
2 13	Near infrared spectroscopy.	55
	Early goal-directed therapy protocol.	57
3.2	Curves for propability of 28-Day Survival.	65
3.3	Mechanism of action of vasopressors and	75
3.3	inotropes.	13
3.4	Structure of epinephrine.	76
3.5	Structure of norepinephrine.	81
3.6	Structure of dopamine.	84

List of Tables

Table	Title	Page
1.1	Sepsis: terminology and definitions	8
1.2	Risk factors for sepsis	9
1.3	Main pathogens in septic shock and estimated frequency.	10
1.4	Biologic effects of proinflammatory cytokines such as TNF and IL-1.	13
2.1	Factors that may contribute to hyperlactataemia	33
3.1	Physiological characteristics and clinical effects of commonly used intravenous solutions	60
3.2	Mortality Rates	65
3.3	Adverse events of dopamine and norepinephrine	66
3.4	Adverse events in patients who had septic shock	69

Introduction

Severe sepsis is among the most common reason for admission to intensive care units (ICUs) throughout the world. The increasing use of immunosuppressive agents, and the aging of the population have contributed to the exponential increase in the incidence of sepsis. Despite dramatic improvements in diagnostic and treatment procedures, mortality rates among septic patients remain high (Gaieski et al., 2010).

Sepsis is the clinical syndrome that results from a dysregulated inflammatory response to infection. Severe sepsis occurs when sepsis is accompanied by either organ dysfunction or evidence of hypoperfusion or hypotension (Marik and Lipman, 2007).

Septic shock results when infectious agents or mediators induced by these agents circulate in the bloodstream and produce hemodynamic decompensation. Its pathogenesis is critically dependent on activation of the innate immune response. The innate response is triggered by activation of cells that secrete inflammatory mediators including cytokines (most importantly, tumor necrosis factor [TNF], interleukin [IL]-1, and IL-6), chemokines (such as IL-8), prostaglandins, and histamine. These mediators act on vascular endothelial cells to cause systemic vasodilatation, increased vascular permeability, and neutrophil recruitment into tissues (Annane et al., 2005).

The initial priority in managing septic shock is to maintain a reasonable mean arterial pressure and cardiac output while the source of infection is identified and addressed, and measures to interrupt the pathogenic sequence leading to septic shock are undertaken (**Steven, 2009**).

Introduction and Aim of The Work

Hemodynamic monitoring is a cornerstone in the care of the hemodynamically unstable septic patient. Its main goal is to detect cardiovascular insufficiency and give a baseline to judge the effectiveness of any applied treatment. Monitoring technologies progress from the most simple, non-invasive and intermittent to the most complex, highly invasive and continuous. However, there has been a steady trend toward less invasive monitoring to reduce the complications associated with invasive techniques (**Trzeciak et al., 2006**).

Vasoactive drugs are the mainstay of hemodynamic management of septic shock when fluids fail to restore adequate tissue perfusion. Vasoactive drugs are a group of bioactive chemicals, which change vasomotor tone through their influence on various peripheral receptors. So they largely improve perfusion pressure and preserve regional distribution of cardiac output through an increase in mean arterial pressure above autoregulatory thresholds. Most of these drugs have inotropic effects that improve oxygen delivery and cardiac output through increasing heart rate and contractility. So, understanding the pharmacological action of these drugs is crucial (Holmes and Walley, 2009).

Aim of The Work

Evaluating the role of vasopressors and inotropes in septic shock in intensive care unit.

Incidence, Terminology and Pathophysiology of Septic Shock

Incidence:

The incidence of sepsis varies among the different racial and ethnic groups, but appears to be highest among African-American males. The estimated annual incidence of severe sepsis over the years from 2004 to 2009 ranges from 300 to 1031/100,000. Epidemiological studies of the incidence of that incidence sepsis showed increased approximately 13% each year with mortality rates ranging from 15% to 30% and more than 60% in septic shock (Gaieski et al., 2013).

In the United States, sepsis is the second leading cause of death in non-coronary ICU patients, and the tenth most common cause of death overall according to data from the Centers for Disease Control and Prevention (the first being multiple organ failure). Sepsis is common and also more dangerous in elderly, immunocompromised, and critically-ill patients. It occurs in 1-2% of all hospitalizations and accounts for as much as 25% of intensive care unit (ICU) bed utilization (Martin et al., 2003).

Definitions and Terminology:

Adequately defining sepsis has been an ongoing problem for many years till the the American College of Chest Physicians (ACCP) and the Society of Critical Care Medicine (SCCM) organized and held a consensus conference in 1991. It was the hope of this committee that if standardized definitions existed, earlier detection of sepsis would provide for earlier therapeutic intervention and improved outcomes (Bone et al., 1992).

The committee created the new term systemic inflammatory response syndrome (SIRS). This acronym is intended to encompass the initial inflammatory process seen in sepsis as well as other non-infective processes; such as pancreatitis, major trauma and tissue injuries, hemorrhagic shock, and burn injuries. The relationship between non-infective and infective processes and SIRS is presented in (Figure 1.1) (Bone et al., 1992).

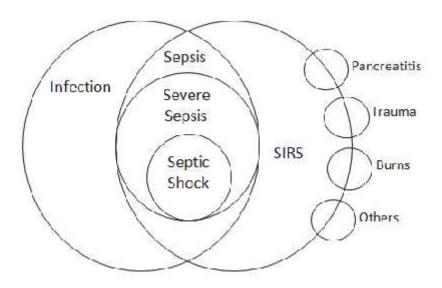


Figure 1.1: Relationship of Infective and Non-infective Processes and the Systemic Inflammatory Response Syndrome (SIRS) (Bone et al., 1992).

In 2001 during an International Sepsis Definitions Conference that included representatives from the ACCP, SCCM, American Thoracic Society (ATS), European Society of Intensive Care Medicine (ESICM), and Surgical Infection Society (SIS), and again in 2012 by the SCCM and ESICM, a practical modification of SIRS has been published, and developed an expanded view of sepsis after revisiting the literature (**Dellinger et al., 2013**).

This conference developed the concept of a staging system for sepsis based on four separate characteristics designated by
