Single Incision Trans-obturator Tape Procedure versus The Standard Trans-obturator Tensionfree Tape In The Management of Primary Urodynamic Stress Incontinence

Thesis

Submitted for Partial Fulfillment of MD Degree in **Obstetrics** and **Gynecology**

BY

Maii Medhat Nawara Mohyi ElDin

M.B.B.Ch - Ain Shams University - 2006 M.Sc. Obstetrics and Gynecology - Ain Shams University - 2010 Assistant lecturer in Obstetrics and Gynecology-Ain Shams University

Under Supervision of

Prof. Khaled Kamal Ali

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Hazem Mohamed Sammour

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Ahmed Mohamed Ibrahim

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Adel Shafik Salah El-Din

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Mamdouh

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University - Cairo 2014

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Khaled Kamal Ali,** Professor of Obstetrics and Gynecology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I am eternally grateful to **Prof. Hazem Mohamed Sammour** Professor of Obstetrics and Gynecology, faculty of medicine, Ain Shams University, for his help and keep support, without his help this work would have never been completed. I am deeply indebted to him for his comments and suggestion and his deep interest in the subject.

I would like also to express my sincere appreciation and gratitude to **Prof. Ahmed Mohamed Ibrahim**, Professor of Obstetrics and Gynecology, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr.**Adel Shafik Salah El-Din, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

I would like to express my deepest gratitude to **Dr. Ahmed Mohamed Mamdouh**, Lecturer in Obstetrics and Gynecology, Faculty
of Medicine, Ain Shams University, for his kind advice support and
valuable supervision and his great effort throughout this work.

Finally, I want to express my deepest gratitude to the staff of the urogynecology unit and to my patients.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Maii Medhat Nawara Mohyi ElDin

Contents

List of Abbreviations	i	
List of Tables	iii	
List of Figures	v	
Introduction and Aim of the Work	1	
Review of Literature	5	
* Surgical Female Urogenital Anatomy	5	
* Physiology of the Lower Urinary Tract	23	
* Epidemiology, risk factors, and pathogenesis urinary incontinence	of 31	
* Assessment and Investigation	43	
* Surgical Management of Stress Urinary Incontinent	nce	63
Patients and Methods	89	
Results	115	
Discussion	164	
Summary	189	
Conclusion	193	
Recommendations	194	
References	195	
Arabic Summary		

List of Abbreviations

ALPP : Abdominal leak point pressure AMS : American medical systems ATFP : Arcus tendineus fascia pelvis

BMI : Body mass index CI : Confidence interval

CLPP : Cough leak point pressure CT : Computed tomography

DM : Diabetes mellitus
DO : Detrusor overactivity
EGP : Egyptian pounds
EMG : Electromyography

ICIQ-UI-SF: International Consultation on Incontinence

Questionnaire - Urinary Incontinence - Short

Form

ISD : Intrinsic sphincter deficiencyMMK : Marshal, Marchetti and KrantzMRI : Magnetic resonance imaging

MUCP : Maximum urethral closure pressure

MUI : Mixed urinary incontinence

MUS : Mid-urethral slings

NICE: National institute for health and clinical

excellence

OAB : Overactive bladder Pdet : Detrusor presuure

PFMT : Pelvic floor muscle training

PGI-I : Patient Global Impression of Improvement

POP : Pelvic organ prolapsed

POP-Q : Pelvic organ prolapse scoring system

PPV : Positive predictive value

Pura : Urethral pressure
Pves : Bladder pressure
Qave : Average flow rate
Qmax : Maximum flow rate

List of Abbreviations (Cont.)

RBCs : Red blood cells

RCT : Randomized controlled trial

SD : Standard deviation

SPARC : Supra-pubic arch sling system SUI : Stress urinary incontinence

Tds : Three times daily TOT : Transobturator tape

TVT : Tension-free vaginal tape TVT-O : Transvaginal tape-obturator

UI : Urinary incontinence
UPP : Urethral pressure profile
UTI : Urinary tract infection
UUI : Urge urinary incontinence
VAS : Visual Analogue Score
VH : Vaginal hysterectomy

VLPP : Valsalva leak point pressure

vs : Versus

VV : Voided volume

WHI : Women Health Initiative

List of tables

Table	Title	Page
1	Classification of SUI	42
2	Mesh Material Classification	75
3	Patients' characteristics in the two study groups	117
4	Parity and Menopausal status in the two study groups	118
5	Medical and surgical history in the two study groups	119
6	Results of vaginal examination and stress test before surgery in the two study groups	120
7	Preoperative ICIQ score in the two study groups	121
8	Results of urodynamic testing and preoperative hemoglobin assay in the two study groups	122
9	Type of anesthesia and performance of concomitant procedure in the two study groups	124
10	Operative time and estimated blood loss in the two study groups	126
11	Intraoperative blood usage and incidence of iatrogenic injury in the two study groups	129
12	Postoperative pain score and hemoglobin assay in the two study groups	131
13	Incidence of postoperative fever and duration of postoperative urinary catherterization in the two study groups	133
14	Length of hospital stay after surgery in the two study groups	135

List of tables (Cont.)

Table	Title	Page
15	Subjective cure, result of stress test, and	137
	patient satisfaction at 3 days after	
	surgery in the two study groups	
16	Subjective cure, result of stress test, and	138
	patient satisfaction at 1 week after	
	surgery in the two study groups	
17	Subjective cure, result of stress test, and	140
	patient satisfaction at 1 month after	
	surgery in the two study groups	
18	Subjective cure, result of stress test, and	142
	patient satisfaction at 3 months after	
	surgery in the two study groups	
19	Subjective cure, result of stress test, and	144
	patient satisfaction at 6 months after	
	surgery in the two study groups	
20	ICIQ score at 6 months after surgery in	148
	the two study groups	
21	Unwanted outcomes at 3 days after	150
	surgery in the two study groups	
22	Unwanted outcomes at 1 week after	153
	surgery in the two study groups	
23	Unwanted outcomes at 1 month after	156
	surgery in the two study groups	
24	Unwanted outcomes at 3 months after	159
	surgery in the two study groups	
25	Unwanted outcomes at 6 months after	162
	surgery in the two study groups	

List of Figures

Fig.	Title	Page
1	Pelvic bones	6
2	Pelvic floor muscles	8
3	Perineal vessels	10
4	Muscles of obturator region	11
5	Cross-sectional anatomy of the mid- urethra	17
6	Anatomy of the Female Lower Urinary Tract	20
7	Structural support of the urethra as it relates to stress urinary incontinence: The hammock hypothesis	22
8	Idealized normal adult cystometrogram	55
9	Burch urethropexy: supporting the vagina/pubocervical fascia proximal to the urethra	64
10	TVT by Gynecare.	76
11	Monarc TM trans-obturator needles, the Monarc TM Sling	79
12	Tension-free Vaginal Tape-Secur	85
13	MinArc Mini-sling by American Medical Systems	86
14	Single incision TOT sling	87
15	Mesh used in single incision TOT	97
16	Longitudinal vaginal incision	98
17	Dissection of para-urethral space	99
18	Forceps inserted in the T-pockets	100
19	Mesh placement in the single incision TOT procedure	100
20	Needles used in the standard TOT procedure	102
21	Position of skin incision in standard TOT technique	103

List of Figures (Cont.)

Fig.	Title	Page
22	Needle insertion in standard TOT technique	104
23	Mesh placement in standard TOT technique	105
24	Flow chart showing the dropped out patients	116
25	Box plot showing preoperative ICIQ score in both study groups	121
26	Mean VLPP and MUCP in both study groups.	122
27	Performance of concomitant procedures in both study groups	125
28	Mean operative time in both study groups	127
29	Mean estimated blood loss in both study groups	127
30	Intraoperative blood usage and incidence of iatrogenic injury in both study groups	130
31	Postoperative change in hemoglobin in both study groups.	131
32	Mean postoperative pain score in both study groups	132
33	Incidence of postoperative fever and duration of postoperative urinary catheterization in both study groups	134
34	Box plot showing length of hospital stay in both study groups	135
35	Subjective cure at 1 week, 1 month, 3 months, and 6 months after surgery in the two study groups	145
36	Results of stress test at 1 week, 1 month, 3 months, and 6 months after surgery in the two study groups	146

List of Figures (Cont.)

Fig.	Title	Page
37	Patient satisfaction at 1 week, 1 month, 3	147
	months, and 6 months after surgery in	
	the two study groups	
38	Box plot showing perioperative change	148
	in ICIQ score in both study groups	
39	Unwanted outcomes at 3 days after	151
	surgery in the two study groups	
40	Unwanted outcomes at 1 week after	154
	surgery in the two study groups	
41	Unwanted outcomes at 1 month after	157
	surgery in the two study groups	
42	Unwanted outcomes at 3 months after	160
	surgery in the two study groups	
43	Unwanted outcomes at 6 months after	163
	surgery in the two study groups	

Single Incision Trans-obturator Tape Procedure versus The Standard Trans-obturator Tensionfree Tape In The Management of Primary Urodynamic Stress Incontinence

A protocol of Thesis
Submitted for Partial Fulfillment of MD Degree in Obstetrics
and Gynecology
BY

Maii Medhat Nawara Mohyi ElDin

M.B.B.Ch – Ain Shams University – 2006 M.Sc. Obstetrics and Gynecology – Ain Shams University - 2010 Assistant lecturer in Obstetrics and Gynecology-Ain Shams University

Under Supervision of

Prof. Khaled Kamal Ali

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Hazem Mohamed Sammour

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Prof. Ahmed Mohamed Ibrahim

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Adel Shafik Salah El-Din

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Mamdouh

Lecturer in Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University – Cairo 2012

Introduction

Stress urinary incontinence (SUI) is defined by the international continence society (ICS) as involuntary loss of urine that creates a hygienic and social problem and affects the quality of life of the patient (*Moreno et al.*, 2006).

The prevalence of urinary incontinence in women, using the inclusive definition of any leakage at least once in the past year, ranges from 25 to 51 percent (Buckley et al., 2010; Markland et al., 2011).

is associated with significant social financial The social costs include costs. personal embarrassment and curtailment of daily activities that urine leakage. SUI is associated with cause depression, particularly in the elderly. The cost incontinence pads and undergarments are borne directly by patients as they are usually not covered by health insurance plans (Viktrup et al., 2005).

Over 200 surgical procedures to treat SUI have been described in the medical literature (*Farrell et al.*, 2003). An early procedure for treating female SUI, developed by Kelly in 1911, involved anterior colporrhaphy with plication of the urethra (*Kelly and Dumm. 1914 cited in Berek et al.*, 2007).

In 1949, Marshal, Marchetti and Krantz described a retropubic procedure (MMK), in which the rectus fascia was divided to allow access to the supportive tissue at the bladder neck, which is then fixed to the periosteum of the pubic bone. In 1961, Burch described a similar operation, in which these supporting tissues were anchored laterally to Cooper's ligament instead of the pubic bone, obviating the risk of osteitis pubis, an

uncommon but debilitating complication associated with the MMK procedure (Burch, 1961 cited in Berek et al., *2007*). procedures involved suspending stabilizing the bladder neck and proximal urethra in a high retropubic position, thereby preventing their during times of increased intra-abdominal descent pressure. These techniques were effective, with mean 3continence of 77% (Walters 7-year rate \boldsymbol{M} and Daneshgari, 2004).

Previously, the Burch procedure was offered to SUI gold patients as the standard primary procedure. When outpatient compared with the minimally procedures, invasive the Burch has the drawbacks of an abdominal incision and a hospital stay. Laparoscopic Burch repair has demonstrated subjective cure rates, but objective cure varies. Success with laparoscopic Burch repair is dependent upon the surgeon's experience and surgical technique (Jenkins et al., 2007).

More recently, suburethral pubovaginal sling operations have become popular amongst urologists and gynecologists. In 1942, Aldridge developed the first suburethral sling using rectus fascia. This avoided the need for a laparotomy, therefore decreasing morbidity, but a second incision was still required either abdominally (to harvest rectus fascia) or on the inner thigh (for fascia lata) (*Aldridge*, 1942 cited in Roger et al., 2011).

Published studies show long-term cure rates to be similar to Burch procedure, with sustained continence in about 85% of patients. In an attempt to obviate the need for a second incision to harvest fascia, many have evaluated the efficacy of cadaveric fascia, xenografts and synthetic materials e.g. Mersilene, Gortex, silicone and polypropylene, as the sling material (*Walter and Daneshgari*, 2004).

Normal urethral closure is maintained by a combination of intrinsic and extrinsic factors. The extrinsic factors include the levator ani muscles, the endopelvic fascia and their attachments to the pelvic sidewalls and urethra. These structures form a hammock beneath the urethra that responds to increases in intra-abdominal pressure by tensing, allowing the urethra to be closed against the posterior supporting shelf. For many women, the loss of this supporting mechanism is severe enough to cause loss of urethral closure during periods of increased intra-abdominal pressure, resulting in stress incontinence (*Delancey*, 1994).

Modern surgical therapy of female SUI is no longer focused on the proximal urethra and bladder neck, but on providing additional support at the midurethra to restore continence. This has lead to introduction of mid-urethral sling procedures. Tension-free vaginal tape (TVT) is a standard minimally invasive procedure used to treat SUI since 1995 when it was first described by *Ulmsten et al.* (1995).

The TVT procedure used a "bottom-up" retropubic route of sling passage, and was soon followed by suprapubic arch (SPARC) sling system, using similar methods via a "top-down" approach through the retropubic space toward the midurethra. TVT has shown to have similar effectiveness to colposuspension but with fewer complications (*Cody et al.*, 2003).

The efficacy, simplicity and minimal invasiveness of these procedures led to other procedures such as the transobturator tape (TOT) technique, and more recently prepubic TVT. All of these procedures keep the same principles of mid-urethral, tension-free placement of a synthetic sling material (*Shindel and Klutke*, 2005).

The latest in the logical progression of synthetic slings used in the minimally invasive treatment of SUI is the mini-

sling. However, the next step toward a less invasive, tension-free, mid-urethral sling was to develop a system that could be placed through one small vaginal incision. The TVT-SecurTM device uses a single vaginal incision to place a suburethral macroporous polypropylene mesh tape without exit wounds. The product can be placed either in a Ushape, similar to the transobturator tape position, or a V-shape, similar to the retropubic tape position (*Salz et al.*, 2007).

The latest mini-sling is the MiniArcTM Single-Incision Sling from American Medical Systems. The product obtained U.S. Food and Drug

Administration (FDA) approval for market distribution in March 2007, and the MiniArcTM Sling involves a minimally invasive procedure similar

to the TVT-SecurTM product. The MiniArcTM sling has several modifications over the currently available minislings on the market that intend to make it easier to place and achieve immediate fixation for mid-urethral placement of the mesh tape sling (*Moore and Miklos, 2008*).

Although success of vaginal tension-free from 84 95%, complications techniques ranges to described, related to passage of needles include bladder, bowel, and major blood vessel injuries, as well postoperative voiding difficulties and de novo urgency and urge incontinence(de Tayrac et al., 2004).

With objective to simplify the previous techniques and minimize the complication rates related to the pass of needles, a new technique has been developed maintaining the principle of a tension-free sling and introducing the concept of application of the sling without needles through a suburethral single vaginal incision (*Navazo et al.*, 2009).