

Impact of gamma rays and certain natural products on the virulence of some metallo-β-lactamase producing gram-negative pathogenic bacteria

Thesis Submitted for the Ph.D degree in Microbiology

By Hanady Mohammed AL-Ghareeb Mohammed Nada

B. SC. in Microbilology & Chemistry, Ain-Shams University (1999)

M.Sc. in Microbiology, Zagazig University (2008)

Supervisors

Prof. Dr. Fawkia Mohammed Elbeih

Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Dr. Khaled Zakaria El-Baghdady

Associate Prof. of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Hala Abd-Allah Farrag.

Professor of Medical Microbiology Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority

Dr. Einas Hamed El-Shatoury

Associate Prof. of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Microbiology Department, Faculty of Science, Ain Shams University.

2015

بسم الله الرحمن الرحيم

"هالوا سبحانك لاعلم لنا إلا ماعمتنا إنك أنت العليم الحكيم"

حدق الله العظيم

سورة البقره الأيه (٣٢)

DEDICATION

I would like to dedicate this work to soul of my lovely father, to my mother for their encouragement, to my husband for putting up with me and supporting me all through this work, to my children wishing them a life overwhelmed with success. Many thanks to all of them.

Hanady Nada

ACKNOWLEDGEMENT

I am deeply thankful to ALLAH for showing me the right path and helping me to complete this work.

My appreciation to Prof. Dr. Fawkia Mohammed Elbeih, Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for her kind supervision

My sincere thanks with deep gratitude to Prof. Dr. Hala Abd-Allah Farrag. Professor of Medical Microbiology, Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority for devoting much of her valuable time in the supervision during all stages of this work, objective criticism which was a great asset to this dissertation, her constructive ideas to solve the problems.

I would like to express my profound appreciation and special thanks to Dr. Khaled Zakaria El-Baghdady and Dr. Einas Hamed El-Shatoury. Associate Proffessor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University. For their support, encouragement, continuous guidance, valuable remarks, constructive criticism and support to pursue this thesis.

I am deeply thankful to Dr. Asrrar Mohammed Murad Associate Proffessor of Physiology at National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority for her supervision during in vivo study on experimental animals

I am also taking this opportunity to thank Dr. Sahar Tolba Associate Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University. For her kind help in performing the genotypic detection of metallo-β-lactamase genes.

Hanady Nada

Contents	Page No.
List of contents	I
List of tables	VI
List of figures	IX
List of abbreviations	XII
Abstract	XIV
Introduction	1-4
I- LITERATURE REVIEW	5-57
1-1 Bacterial pathogenicity	7
1-2 Antibiotics	12
1-3 Antibiotic resistance.	15
1-4 β-Lactam antibiotics	
Penicillins.	22
Cephalosporins	22
Carbapenems	24
Monobactams	24
Mechanism of action of β-lactams	26
1-5 β-lactamases	27
Classification of β-lactamases	29
1-6 Metallo-β-lactamase (MBL)	31
Features of metallo-β-lactamases	32
Aquired metallo-β-lactamases	. 34
$-bla_{\mathrm{IMP}}$	36
-bla _{VIM}	36
<i>-bla</i> _{SPM}	37
- bla_{GIM}	37
$-bla_{ ext{SIM}}$	37
-bla _{NDM}	38

I

Catalytic mechanism of MBLs	39
1-7 MBL inhibitors	41
Chemical MBL Inhibitors	41
-Ethylene diamine tetra acetic acid (EDTA)	41
-2-Mercaptopropionic acid (MPA)	43
Natural MBL inhibitors	43
-Quercetin	43
1-8 Natural plants used in this study as MBL-inhibitors	45
-Garlic; <i>Allium sativum L</i>	45
-Onion; Allium cepa	46
-Chives; Allium tuberosum	47
-Leek; Allium ampeloprasum	47
-Asparagus; Asparagus officinalis	47
-Cabbage; Brassica oleracea	48
1-9 Radiation interaction with biological	
materials	48
Units of radiation	50
Action on the cells	51
-Direct (Target) theory	51
-Indirect (Diffusion) theory	53
1-10 Application on animal model	56
Experimental animals	56
Cisplatine	57
II- MATERIALS AND METHODS	58-9 0
2-1 Materials	58-64
2-1-1 Culture media	58
Blood culture medium	58
MacConkey's medium agar No.3	58
Mueller Hinton (MH) agar	59
Nutrient agar (NA)	59

Salmonella-Shigella agar (SS)	60
Selenite "F" broth base (SFB)	60
Tryptone soya broth (TSB)	60
Xylose lysin desoxycholate (XLD) agar	61
2-1-2 Antibiotics	61
2-1-3 Inhibitors	61
2-1-4 Chemicals	62
2-1-5 Irradiation source	64
2-1-6 Plants	64
2-1-7 Experimental animals	64
2-2 Methods	65-90
2-2-1 Collection of samples and specimens	65
2-2-1 Collection of samples and specimens	65
2-2-1 Collection of samples and specimens Urine samples	65 65
2-2-1 Collection of samples and specimens Urine samples. Sputum specimens.	656566
2-2-1 Collection of samples and specimens Urine samples	65 65 66 67
2-2-1 Collection of samples and specimens Urine samples. Sputum specimens. Throat swabs. Wound (Pus) swabs.	6565666767
2-2-1 Collection of samples and specimens Urine samples. Sputum specimens. Throat swabs. Wound (Pus) swabs. Stool specimens.	65 65 66 67 67

2-2-4 Primary screening for MBL producing	
isolates of gram-negative bacilli	
(Ceftazidime (CAZ) resistant isolates)	71
2-2-5 Phenotypic detection methods of	
metallo-β-lactamase (MBL) production	
by the pathogenic isolates	73
2-2-5-1 Combined Disk Test (CDT)	73
2-2-5-2 Double Disk Synergy Test	, -
(DDST)	75
2-2-6 Identification of MBL-producers	76
2-2-7 Gynotypic detection of MBL-blagenes	
by polymerase chain reaction (PCR)	78
2-2-7-1 Preparation of DNA template	78
2.2.7.2 MDI bla primare	78
$2-2-7-2$ MBL- bla_{gene} primers	70
2-2-7-3 Preparation of PCR reactions	79
2-2-7-4 PCR Programs and temperature	
profile	79
2-2-7-5 DNA electrophoresis	81
2-2-8 Effect of <i>in vitro</i> gamma irradiation on	
MBL-producers	81
2-2-8-1 Preparation of bacterial suspension	
for <i>in vitro</i> gamma	
irradiation	81
a- Antibiotic susceptibility testing of	
irradiated MBL-producers	82
b- Phenotypic detection of MBL-	
production by irradiated producers	82
c- Determination of minimum inhibitory	
concentrations (MICs) of ceftazidim and	
imipenem antibiotics against MBL-	
producers after irradiation	82
P WIVEL III WOLWINGTON	

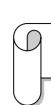

2-2-9 Inhibition of MBL production by non	
antimicrobial plant extracts	83
2-2-9-1 plants	83
2-2-9-2 Preparation of plants extracts	83
2-2-9-3 Study of monotherapy versus	
combination therapy for antibiotics	
and natural plant extracts on MBL-	
production by pathogenic MBL-	
producers	85
2-2-10 <i>În vivo</i> studies	85
2-2-10-1 Animal model	85
2-2-10-2 Preparation of rats for the	
treatment	86
2-2-10-3 Preparation of inoculum	86
2-2-10-4 Rats injection doses of antibiotics	
and natural plant	
extracts	87
2-2-10-5 Experimental design	87
2-2-10-6 Analytical procedures	89
2-2-11 Statistical analysis	90
III-RESULTS	91-138
IV- DISCUSSION	139-182
V- CONCLUSION	183-185
VI- SUMMARY	186-188
VII- REFRENCES	189-226
الملخص العرب - ١١١٦/	1227-230

Table No.	Title	Page No.
(1)	Classes of used antibiotics, their biological source, spectrum of effect and their mode of action.	14
(2)	Classes of β-lactams and their antimicrobial spectrum	25
(3)	Classification of β -lactamase enzymes	30
(4)	The most common MBL-bla _{genes} (Walsh, 2010)	35
(5)	Susceptibility break points of different group of antibiotics with their mode of action.	72
(6)	The oligonucleotide sequence of specific primers used in this study	80
(7)	Isolation of 107 gram-negative bacilli from different samples and specimens out of 98 patients with their gender and age	93
(8)	Susceptibility of 107 isolates of gramnegative bacilli to different antibiotics	95

(9)	Phenotypic detection of metallo-β-lactamase by combined disk test (CDT) and double disk synergy test (DDST)	107
(10)	Results of combined disk test (CDT) for 107 isolates of gram-negative bacilli resistant to ceftazidime (CAZ) with two inhibition zones \geq 5 mm and \geq 7 mm	112
(11)	Results of double disk synergy test (DDST) for 107 isolates of gram-negative bacilli resistant to ceftazidime (CAZ).	112
(12)	Genotypic detection of MBL- bla_{genes} present in fourteen MBL-producing strains with their source of isolation	117
(13)	Antibiotic susceptibility test of MBL-producer before and after exposure to 24.4 Gy of gamma radiation	123
(14)	Minimum inhibitory concentrations (MICs) of ceftazidime (CAZ) and imipenem (IPM) against the MBL-producers before and after gamma irradiation.	126
(15)	Effect of gamma irradiation on the production of MBL in fourteen MBL-producers by combined disk test and double disk synergy test	127
	double disk synergy test	12

(16)	Increased inhibition zone diameters (mm) around ceftazidime (CAZ) plus plant extracts disks compared with CAZ disk only	130
(17)	Increased inhibition zone diameters (mm) around imipenem (IPM) plus plant extracts disks compared with IPM disk only	131
(18)	Effect of different treatment on the white blood cell count (WBCs) and number of dead rats	134
(19)	Effect of different treatment on white blood cells (WBCs) count and differential analysis at the end of treatments	138

LIST OF FIGURES

Figure No.	Title	Page No.
(1)	Mode of action of antimicrobial agents	17
(2)	β-lactam ring structure	20
(3)	The structures of β -lactam antibiotics	21
(4)	Diagram showing the increasing in number of β -lactamases since 1970 (Davies and Davies, 2010)	29
(5)	Suggested catalytic mechanism of cephalosporins by di-zinc B1 Subclass.	40
(6)	(a) Chemical structure of ethylene diamine tetra acetic acid (EDTA). (b) The way of EDTA to chelate the Zn ⁺² metal ion	42
(7)	Chemichal structure of 2-mercaptopropionic acid (MPA)	43
(8)	Chemical structure of quercetin	44
(9)	Arrangement of substrate & inhibitor disks to detect MBL-producers by combined disk test (CDT) method	74

(10)	Arrangement of substrate & inhibitor disks to detect MBL-producers by double disk synergy test (DDST) method	76
(11)	Frequency of samples and specimens out of 98 patients	92
(12)	Susceptibility of 107 gram-negative bacilli to 19 antibiotics with different mode of action	102
(13)	Petri-dish with GNB isolates showing ghost zone between ceftazidime (CAZ, 30 µg) or Imipenem (IPM, 10 µg) disk and disk containing (A) 5 µl of 0.5 M EDTA space between center to center (10-15 mm). (B) 3 µl of 97% MPA space between center to center (20-25 mm), representing double disk synergy test (DDST)	106
(14)	Polymerase Chain Reaction (PCR) analysis for bla_{SPM}	117
(15)	Polymerase Chain Reaction (PCR) analysis for bla_{VIM}	118
(16)	Polymerase Chain Reaction (PCR) analysis for bla_{SIM}	118
(17)	Polymerase Chain Reaction (PCR) analysis for bla_{GIM}	119
(18)	Polymerase Chain Reaction (PCR) analysis for bla_{NDM}	119