

"MECHANICAL PROPERTIES AND DURABILIYT ASPECTS OF GEOPOLYMER CONCRETE USING GROUND GRANULATED BLAST FURNACE SLAG"

By Mostafa Mahmoud Boshra Elewa

A Thesis Submitted To The

Faculty of Engineering at Cairo University

In partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

"MECHANICAL PROPERTIES AND DURABILIYT ASPECTS OF GEOPOLYMER CONCRETE USING GROUND GRANULATED BLAST FURNACE SLAG"

By Mostafa Mahmoud Boshra Elewa

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Under the Supervision of

Prof. Dr. Ahmed Mahmoud Ragab

Prof. Dr. Mohamed Mohsen El-Attar

Professor of properties of Materials, Department of Structural Engineering Faculty of Engineering, Cairo University Professor of properties of Materials, Department of Structural Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Ahmed Khafaga

Professor of properties of Materials, Building materials and Quality control Research Institute, Housing and Building National Research Center

"MECHANICAL PROPERTIES AND DURABILIYT ASPECTS OF GEOPOLYMER CONCRETE USING GROUND GRANULATED BLAST FURNACE SLAG"

By Mostafa Mahmoud Boshra Elewa

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Approved by the

Prof. Dr. Ahmed Mahmoud Ragab

Thesis Main Advisor

Prof. Dr. Mohamed Mohsen El-Attar

Advisor

Prof. Dr. Mohamed Ahmed Khafaga
Professor, Housing and Building National Research Center

Prof. Dr. Mohamed Ismael Abd El -Aziz

Internal Examiner

Prof. Dr. Heba Hamed Bahnasawy

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Professor, Housing and Building National Research Center

Engineer's Name: Mostafa Mahmoud Boshra Elewa

Date of Birth: 1/1/1991 **Nationality:** Egyptian

E-mail: Engdarsh82@yahoo.com

Phone: 01065543744

Address: Sidi Salem – Kafr El-Sheikh

Registration Date:1/3/2014Awarding Date:..../2018Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Ahmed Mahmoud Ragab Prof. Mohamed Mohsen El-Attar Prof. Mohamed Ahmed Khafaga

Professor, Housing and Building National Research Center

Examiners:

Prof. Ahmed Mahmoud Ragab
Prof. Mohamed Mohsen El-Attar
Prof. Mohamed Ahmed Khafaga

(Main Advisor)
(Advisor)
(Advisor)

Professor, Housing and Building National Research Center Prof. Mohamed Ismael Abd El Aziz (Internal examiner) Prof. Heba Hamed Bahnasawy (External examiner) Professor, Housing and Building National Research Center

Title of Thesis:

"MECHANICAL PROPERTIES AND DURABILIYT ASPECTS OF GEOPOLYMER CONCRETE USING GROUND GRANULATED BLAST FURNACE SLAG"

Key Words:

Geopolymer concrete, Blast Furnace Slag, Mechanical properties, Durability, Sulfate
Attack

Summary:

The current research aimed to produce a green concrete environmentally friendly without using ordinary Portland cement "Geopolymer concrete" using locally produced ground granulated blast furnace slag in Egypt. The physical and mechanical properties of fresh geopolymer concrete "slump test, setting time, plastic shrinkage" and hardened geopolymer concrete "compressive strength, splitting tensile strength, modulus of elasticity" were studied in this research. Also, durability aspects of geopolymer concrete using slag as water absorption test, water permeability test, resistance of sulfate attack, chloride ion penetration and dry shrinkage were studied in the current research. In addition, comparisons were carried out for the test results with the results of similar OPC concrete mixes.

Acknowledgments

First of all, the most gratitude is to **ALLAH** for his generosity in giving me the strength, knowledge and success to accomplish this research, overcome any obstacles and difficulties I faced during my work.

I wish to thank and express most sincere gratitude and very deep appreciation to my advisor **Prof.Dr. Mohamed Ahmed Khafaga**, professor of properties of materials, building materials and Quality control Research Institute, Housing and Building National Research Center for his thoughtful guidance, his patience, helpful advices, insightful discussion, critical comments, valuable remarks and correction of the thesis. I have been extremely lucky to have an advisor like him. He encouraged me to not only grow as a researcher and engineer but also as an independent thinker. For everything you have done for me **Prof.Dr. Khafaga**, I deeply thank you.

I wish to express my sincere gratitude and deep appreciation to **Prof.Dr Mohamed Mohsen El-Attar**, my advisor for accepting me as an MSc student, for his patience, thoughtful guidance and assistance throughout the development of this thesis.

I wish to express my sincere gratitude and deep appreciation to **Prof.Dr Ahmed Mahmoud Ragab**, my advisor for accepting me as an MSc student and assistance throughout the development of this thesis.

I wish to express my sincere gratitude and deep appreciation to **Prof.Dr Heba Hamed Bahnasawy and Prof.Dr Mohamed Ismael Abd El-Aziz** for their valuable remarks and comments.

I don't find words to express my deep appreciation and gratitude to **my mother**, **my father**, **my wife** and **my brothers** for their continuous encouragement, prayer and support to finish this work.

I wish to express my sincere gratitude and deep appreciation to **Mr. Ramadan Abo El-Gheit** for his assistance to finish this work, continuous encouragement and support.

Thanks to the technical staff of the materials research laboratories in Housing and Building National Research Center at which the experimental program of this study have been carried out.

Finally, to everyone who participated in some way or another, in this research, I owe my thanks and gratitude.

Dedication

I would like to dedicate this thesis to **my mother** for her support, endless love and continuous encouragement for me to success in my work. Also, I would like to dedicate this thesis to **my father**, **my wife**, **my brothers and my son** for their endless love and support.

ACKNOWLEDGMENTS	i
DEDICATION	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	X
NOMENCLATURE	xix
ABSTRACT	xx
CHAPTER (1) INTRODUCTION	1
1.1 General.	1
1.2 Research objective	1
1.3 Outline of the thesis	2
CHAPTER (2) LITERATURE REVIEW	3
2.1General	3
2.2 Historical back ground	3
2.3 Terminology and chemistry	3
2.4 Materials of Geopolymer concrete mixes	5
2.4.1 Pozzolanic (waste) materials	5
2.4.1.1 Fly ash (FA)	5
2.4.1.2 Ground granulated blast furnace slag (GGBS)	7
2.4.1.3 Silica fume (SF)	8
2.4.1.4 Rice husk ash (RHA)	10
2.4.1.5 Meta coaline (MK)	11
2.4.2 Aggregates	12
2.4.3 Alkaline liquid (Activator)	13
2.4.3.1 Molarity of sodium or potassium hydroxide solution	13
2 A A Water	15

2.4.5 Super plasticizer (SP)	16
2.5 Mix design & Casting	16
2.6 Curing	17
2.7 Different types of geopolymer concrete mixes	19
2.7.1 Mixes using fly ash	19
2.7.2 Mixes using FA& GGBS	21
2.7.3 Mixes using other materials	23
2.8 Applications of geopolymer concrete	26
CHAPTER (3) EXPERMENTAL WORK	28
3.1 Objective and scope of work	28
3.2 Experimental program description	28
3.2.1 Geopolymer concrete mixes (GPC mixes)	28
3.2.2 Control mixes (OPC mixes)	29
3.3 Properties of used materials	30
3.3.1 Ground Granulated Blast Furnace Slag (GGBS)	30
3.3.2 Silica fume (SF)	33
3.3.3 Alkaline liquid (activator)	34
3.3.4 Aggregates	35
3.3.5 Water	38
3.3.6 Super plasticizer	38
3.3.7 Cement	38
3.4 Concrete mixes	39
3.4.1 Mix design of geopolymer concrete mixtures	39
3.4.2 Mix design of control (OPC) concrete mixtures	40
3.4.3 Mixing procedure	41
3.4.4 Casting	43
3.4.5 Curing	44

3.5 Testing procedure	46
3.5.1 Fresh concrete tests	46
3.5.1.1 Slump test	46
3.5.1.2 Setting time test	47
3.5.1.3 Plastic shrinkage test	48
3.5.2 Hardened concrete tests	49
3.5.2.1 Compressive strength test	49
3.5.2.2 Splitting Tensile strength test	49
3.5.2.3 Modulus of elasticity test	50
3.5.3 Durability tests	51
3.5.3.1 Water absorption test	51
3.5.3.2 Water Permeability test	52
3.5.3.3 Chloride penetration test	53
3.5.3.4 Resistance Sulphate attack test	54
3.5.3.5 Dry shrinkage test	54
CHAPTER (4) RESULTS AND DISCUSSION	56
4.1 General	56
4.2 Fresh concrete properties	56
4.2.1 Slump test.	56
4.2.1.1 Effect of GGBS content.	56
4.2.1.2 Effect of partial replacement of GGBS with silica fume	57
4.2.1.3 Comparison between GPC and OPC.	58
4.2.2 Setting time	59
4.2.2.1 Effect of GGBS content	59
4.2.2.2 Effect of partial replacement of GGBS with silica fume	60
4.2.2.3 Comparison between geopolymer concrete and conventional	
concrete	61

4.2.3 Plastic shrinkage	3
4.2.3.1 Effect of GGBS content	3
4.2.3.2 Effect of partial replacement of GGBS with silica fume64	4
4.2.3.3 Comparison between GPC and OPC6	4
4.3 Hardened concrete properties60	5
4.3.1 Compressive strength (CS)60	5
4.3.1.1 Effect of GGBS content6	7
4.3.1.2 Effect of presence of SF as a partial replacement of GGBS71	1
4.3.1.3 Effect of type of curing74	4
4.3.1.4 Comparison between Geopolymer concrete and Conventional concrete	7
4.3.2 Splitting tensile strength8	2
4.3.2.1 Effect of GGBS content8	3
4.3.2.2 Effect of presence of SF as a partial replacement of GGBS85	5
4.3.2.3 Effect of type of curing80	6
4.3.2.4 Comparison between geopolymer concrete and conventional concrete	9
4.3.3 Modulus of elasticity of geopolymer and conventional concrete9	0
4.3.3.1 Effect of GGBS content92	1
4.3.3.2 Effect of presence of SF as a partial replacement of GGBS92	2
4.3.3.3 Effect of type of curing94	4
4.3.3.4 Comparison between geopolymer concrete and conventional concrete	6
4.4 Durability tests98	8
4.4.1 Water absorption test98	8
4.4.1.1 Comparison between geopolymer concrete and conventional concrete99	8
4 4 2 Water permeability test	1

4.4.2.1 Effect of GGBS content
4.4.2.2 Effect of presence of SF as a partial replacement of GGBS103
4.4.2.3 Effect of type of curing104
4.4.2.4 Comparison between geopolymer concrete and conventional concrete
4.4.3 Chloride ion penetration
4.4.4 Resistance sulfate attack test109
4.4.4.1 Effect of GGBS content110
4.4.4.2 Effect of presence of SF as a partial replacement of GGBS112
4.4.4.3 Effect of type of curing114
4.4.4.4 Comparison between geopolymer concrete and conventional concrete
4.4.5 Drying shrinkage119
4.4.5.1 Results of geopolymer concrete mixes
4.4.5.2 Comparison between geopolymer concrete and conventional concrete
4.5 Comparison between costs of GPC and OPC124
CHAPTER (5) CONCLUSIONS AND RECOMMENDATIONS125
5.1 Conclusions
5.2 Recommendations for current work125
5.3 Recommendations for future work126
REFERENCES 127

CHAPTER (2) LITERATURE REVIEW
Table (2-1): The physical properties of type's fly ash, [17]6
Table (2-2): Classification of FA, [17]6
Table (2-3): Chemical structure of type (f) and type (c) fly ashes, [17]7
Table (2-4): Classification of GGBS, [21]7
Table (2-5): GGBS Physical properties, [17]7
Table (2-6): Chemical structure of GGBS, [17]8
Table (2-7): SF physical properties, [17]9
Table (2-8): SF chemical structure, [17] 9
Table (2-9): RHA physical properties, [17]10
Table (2-10): RHA chemical composition, [17]11
Table (2-11): MK physical properties, [17]12
Table (2-12): Mix proportion and quantities of materials in this research, [26]13
Table (2-13): Results of compressive strength, [26]14
Table (2-14): Data for design of GPC using low calcium FA, [1]17
Table (2-15): Mix proportion used in current research, [29]19
CHAPTER (3) EXPERIMENTAL WORK28
Table (3-1): GPC mixes used in current study and their curing conditions29
Table (3-2): OPC mixes for current study and their curing conditions30
Table (3-3): Chemical analysis of GGBS31
Table (3-4): The physical characteristics of used GGBS31
Table (3-5): Chemical structure of the used silica fume34
Table (3-6): Physical characteristics of the used silica fume34
Table (3-7): Grading of used sand
Table (3-8): Physical characteristics of the used sand
Table (3-9): Physical and mechanical properties of used coarse aggregate37
Table (3-5): I hysical and incenanical properties of used coarse aggregate
Table (3-10): Grading of coarse aggregate
Table (3-10): Grading of coarse aggregate
Table (3-10): Grading of coarse aggregate

Table (3-14): Final quantities of mix design of used control concrete mixtures in
kg/m ³ 40
CHAPTER (4) RESULTS AND DISCUSSIONS56
Table (4-1): Results of CS for GPC mixtures at ages 7, 28, 91,180 and 270
days66
Table (4-2): Results of CS for OPC mixtures at ages 7, 28, 91,180 and 270
days67
Table (4-3): Results of splitting tensile strength test for GPC mixes82
Table (4-4): Results of splitting tensile strength test for conventional concrete
mixes83
Table (4-5): Modulus of elasticity values for geopolymer concrete mixes and
conventional concrete mixes and the percentage between them91
Table (4-6): Results of water absorption test for GPC mixes98
Table (4-7): Permeability coefficient (K) values for geopolymer concrete
mixes101
Table (4-8): Results of chloride ion penetration test for geopolymer concrete
mixes107
Table (4-9): Results of chloride ion penetration test for conventional concrete
mixes108
Table (4-10): Results of resistance sulfate attack test for geopolymer concrete
mixes109
Table (4-11): Results of resistance sulfate attack test for conventional concrete
mixes110
Table (4-12): Cost study for GPC and OPC mixes124

CAHPTER (2) LITERATURE REVIEW
Figure (2-1): Chemical structures of polysialates, [15]
Figure (2-2): Fly ash particles at x 5,000 magnification, [17]
Figure (2-3): FA shape, [17]6
Figure (2-4): GGBS particles electron scanning microscope at 2100 X,
[17]
Figure (2-5): GGBS particles, [17]
Figure (2-6): Silica Fume, [21]
Figure (2-7): Rice husk ash, [17]10
Figure (2-8): Metakaolin, [17]1
Figure (2-9): Scanning microscope of MK, [17]12
Figure (2-10): Compressive strengths for various molarities of mixes, [27]14
Figure (2-11): Effect of water-to- geopolymer solids ratio by weight on GPC
compressive strength, [2]15
Figure (2-12): Effect of different super plasticizer (SP) on the relative slump of FA
based on geopolymer paste, [28]16
Figure (2-13): Effect of curing time on compressive strength, [18]18
Figure (2-14): Values of compressive strength of GPC samples for various curing
duration, [26]18
Figure (2-15): Compressive strength of geopolymer mortars, [30]20
Figure (2-16): Flexural strength of geopolymer mortars, [30]20
Figure (2-17): Variation of percentage weight loss for various elevated
temperatures, [31]21
Figure (2-18): Variation of residual coefficient for compressive strength v/s
temperatures (7 Days), [31]22
Figure (2-19): Variation of residual coefficient for compressive strength v/s
temperatures (28 Days), [31]22
Figure (2-20): Compressive strength of geopolymer concrete cured at ambient
Temperature at different ages with different BRHA content, [10]23
Figure (2-21): Compressive strength of geopolymer concrete cured at 60 °c at
different ages with different BRHA content, [10]24
Figure (2-22): Compressive strength of GPC which cured at 90 °c at various ages
with different BRHA content, [10]24

Figure (2-23): compressive strength for GPC mixes having various ratios o	f silica
fume, [32]	26
Figure (2-24): Brisbane West Well camp Airport (BWWA), [36]	27
CHAPTER (3) EXPERIMENTAL WORK	28
Figure (3-1): During water cooling of GGBS in the factory	31
Figure (3-2): After finish cooling of GGBS in the factory	32
Figure (3-3): Moving of GGBS from the factory	32
Figure (3-4): Milling machine of GGBS	32
Figure (3-5): Size analysis of GGBS water cooled	33
Figure (3-6): Blaine test for GGBS	33
Figure (3-7): Activator used in current thesis	35
Figure (3-8): Grading of fine aggregate	36
Figure (3-9): Grading of coarse aggregate	37
Figure (3-10): Dry mixing of aggregates and GGBS and SF	41
Figure (3-11): Adding the alkaline liquid and SP to the mixture	42
Figure (3-12): Geopolymer concrete produced with GGBS only	42
Figure (3-13): Geopolymer concrete produced with GGBS and SF	43
Figure (3-14): Casting the specimens of all tests	44
Figure (3-15): De-molding the specimens after 24 hours from casting	45
Figure (3-16): Steam curing for the specimens	45
Figure (3-17): Air curing for the specimens at room temperature	46
Figure (3-18): Slump test for geopolymer concrete mixes	47
Figure (3-19): Sieving the mortar from the mixture	47
Figure (3-20): Determination of concrete setting time by penetration	
resistance	48
Figure (3-21): Plastic shrinkage test	48
Figure (3-22): Compressive strength test.	49
Figure (3-23): Splitting tensile strength	50
Figure (3-24): Modulus of elasticity test.	51
Figure (3-25): Water absorption test	52
Figure (3-26): Water permeability test	53
Figure (3-27): Chloride penetration test procedure	53