

DOSIMETRIC STUDY OF FIELD JUNCTION IN ADJACENT BEAMS USING ASYMMETRIC COLLIMATORS AND MULTI LEAF COLLIMATOR (MLC)

By
Ahmed Zaki Zaki Youssef
B.Sc. in Biophysics, Ain Shams - University

A thesis submitted in conformity with the requirement for M.Sc. in Science (Physics - Biophysics), Faculty of Women for Arts, Science and Education.

SUPERVISORS

Prof. Dr. Hosnia M. Abu-Zeid Prof. of Nuclear Physics Phys. Dept., Women Faculty for Arts, Sci., and Education, Ain -Shams University. Prof. Dr. Hoda A. Ashry Prof. of Radiation Physics National Center for Radiation Research and Technology, Atomic Energy Authority.

Dr. Khaled Mohamed El Shahat

Ass. Prof. of Medical Radiation Biophysics, Faculty of Medicine, Al - Azhar University

Supervision Committee

Approval Sheet

Dosimetric Study of Field Junction in Adjacent beams using asymmetric collimators and multi leaf collimator (MLC)

by Ahmed Zaki Zaki Youssef

Submitted for partial fulfillment of M.Sc. Degree in Science (Physics - Biophysics),
Faculty of women for Arts, Science and Education.

Approved by:

signature

Prof. Dr. Hosnia M. Abu-Zeid Prof. of Nuclear Physics Phys. Dept., Women Faculty for Arts, Sci., and Education, Ain -Shams University.

Prof. Dr. Hoda A. Ashry
Prof. of Radiation Physics
National Center for Radiation Research and
Technology,
Atomic Energy Authority.

Dr. Khaled Mohamed El Shahat

Ass. Prof. of Medical Radiation Biophysics, Faculty of Medicine, Al-Azhar University

يِسُمِ اللهِ الرَّحْهِنِ الرَّحِيمِ

Acknowledgements

I am kneeling obsequiousness to ALLAH thanking HIM for showing me the right way. Without God help, my efforts would have gone astray. It was through the grace of God that I was able to acquire this great accomplishment. Thanks also for a person I love him very much, the Prophet Mohammed {God's praise and peace upon}.

Great thanks to the Head of Physics Department, Women Faculty for Arts, Science, and Education, Ain -Shams University, for her kind help and continuous encouragement for me and all young scientists in our department.

Also, I wish to express all my deepest and sincerest gratitude to Prof. Dr. Hosnia M. Abu-Zeid, Prof. of Nuclear Physics, Physics Depart., Women Faculty for Arts, Science, and Education, Ain - Shams University. I am deeply indebted to her for her enormous patience, guidance, and support throughout the work program. My inspiration came from her passion for research and her confidence in my abilities. Working under her leadership in such an exciting field was both educationally and professionally enriching. As a model researcher, I look up to her for inspiration in my professional career.

I wish to express my deepest sincerest thanks to Prof. Dr. Hoda Abdel-Moniem Ashry, Prof. of Radiation Physics, National Center for Radiation Research and Technology, AEA. for her capable supervision, guidance that helped enhancing my understanding of this field and who has given me much guidance necessary for this project, and done so with a great deal of patience and valuable insight. She has been the driving force of this project.

I would also like to extend a special thanks to Dr. Khaled Mohamed El Shahat, Ass. Prof. of Medical Radiation Biophysics, Physics Depart., Faculty of Medicine, Al - Azhar University, who was more helpful, understanding, and enjoyable to work with throughout the course of the work, and for his capable supervision, fruitful guidance, encouragement, ideas, endless help and many illuminating discussions through the course of the investigation.

I would also like to thank the Radiation Biophysics Laboratory team, Physics Department, Women Faculty, Ain Shams University for supporting this work.

Finally, but in no way the least important, I would like to thank my family, for their support, encouragement, and understanding throughout my M.Sc.'s research and for all the good and bad times we had together.

My parents (Father and
Mother),
My wife,
My brother,
My new born son,
My professors
And
My colleagues

Contents

	Symbols & Abbreviations	
	Figures	
	Tables	
	Published Paper	
Lugusu	Austract	
Chapt	er 1:	
Спири	Theoretical Aspect	
	Theoretical rispect	
1.1	Radiotherapy Techniques	13
1.1.1.	How Does Radiation Work?	
1.1.2.	Conventional external beam radiotherapy	16
1.1.3.	Conformal radiotherapy requires treatment planning	
1.1.3.1.	Virtual simulation, 3-dimensional conformal radiotherapy, and	
	intensity-modulated radiotherapy	19
1.1.3.2.	Planning requires high and verified accuracy	
1.1.4.	Accuracy requirements for treatment planning calculations	
1.1.4.1.	Fundamental approach	20
1.2.	Basic Physics of Radiotherapy	
1.2.1.	Introduction	
1.2.2.	Interaction properties of x-rays and electrons	
1.2.3.	Clinical consideration for photon beams	
	External beam radiation therapy (EBRT)	
	Effect of radiation in cancer treatment	
1.2.3.3.	Effect of multiple beams	31
1.2.4.		
1.2.4.1.	Measurement of Isodose curves	37
1.2.4.2.	Parameters of Isodose curves	40
1.2.5.	Typical radiotherapy course	45
1.2.5.1.	Planning margins	49
1.2.5.2	. Specification of target dose	53
1.2.5.3.	The ICRU Reference Point	54
1.2.6.	Stationary Photon Beams	54

1.2.7.	Rotation therapy	55
1.2.8.	Dose volume histograms	55
1.2.9.	Intensity-modulated radiation therapy delivery	58
1.2.9.1	1.Multileaf Collimator as Intensity Modulator	60
Chan	oter: 2	
-	Materials and Methods	
2.	Materials	62
2.1.	Medical Linear Accelerator:	
2.1.1.	Head construction and collimator system design	63
2.1.2.	The treatment head and its components	
	Flattening filter	
	Ionization chambers for dose monitoring	
	Fixed Collimators	
	Multi leaves Collimator	
2.2.	Dosimetric instrumentation	
2.2.1.	The unidose dosimeter	
2.2.2.		
i)-	\ / J1 /	
ii)-	•	
	Pinpoint Chamber (0.015 cm³)	
2.2.3.	μ	
2.2.4.		
2.3.	Methods	
2.3.1.	8	
	1. Check of SSD and FSD Scales	
2.3.2.	Treatment planning system	
2.3.3.		
	Contouring	
	Dose Calculation.	
	Plan Evaluation.	
2.3.7.	Commissioning and quality assurance	79

Chapter 3:

Page No.

Results & Discussions

3	Introduction.	84
3.1.	Effect of the Overlap Between Two Photon Fields on	
	Dose Profile	84
3.1.1.	Dose profile for one photon beam (no overlap)	
3.1.2.	Dose profile for two adjacent photon beams (overlap)	85
	Determination of Gap Separation and Abutment	
	Region for Homogenous Dose Distribution.	87
3.2.	Effect of Different Gap Separations on Dose Distribution	0.0
2.2.1	Between Adjacent Fields	
3.2.1.	Gap separation of about 1.0 mm.	
3.2.2.	Gap separation of about 5.0 mm.	
3.4	Effect of Different Abutment Region Widths on Dose Distribution	
3.5.	The case of Cranio-Spinal Technique	
3.6.	Case of Breast fields and supra-clavicular field matching	
3.7.	Conventional Methods.	
3.8.	Three dimensional methods	102
3.8.1.	Three Dimensional Usual Technique	105
3.8.2.	Three Dimensional (3D) Asymmetric Technique	105
3.9.	SSD match without gap	111
3.9.1.	SSD Match with Gap.	112
3.10.	Three Dimensional Usual	
3.10.1	Three Dimensional Asymmetric	
3.10.2.	· · · · · · · · · · · · · · · · · · ·	
Chap	ter 4 :	
-	lusions	117
	encese. Abstract	119

List of Symbols & Abbreviations

AP Anterior posterior

BSF Backscatter Factor

CAX Central Axis

CPE Charged Particle Equilibrium

CTV Clinical Target Volume

DVH Dose-Volume Histogram

EBRT External Beam Radiotherapy

IBRT Internal Beam Radiotherapy

FS Field Size

GR Gantry Rotation

GA Gantry Angle

GTV Gross Tumor Volume

ICRU International Commission on Radiation Units

IL Isodose Line

IM Internal Margin

IMRT Intensity Modulated Radiotherapy

ISF Inverse Square Factor

ITP Inverse Treatment Planning

ITV Internal Target Volume

IRTV Irradiated Target Volume

LINAC Linear Accelerator

MLC Multi leaf Collimator

MU Monitor Unit

OAD Off-Axis Distance

List of Symbols & Abbreviations

OAR Organ at Risk

PDD Percentage Depth Dose

PA Posterior Anterior

PP Parallel Plate chamber

PTV Planning Tumor Volume

RF Radio-Frequency

RP Radiation Photon

SAD Source-Axis Distance

SCD Source-Collimator Distance

SDD Source -Diaphragm Distance

SF Scatter Factor

SSD Source-Surface Distance

TD Target Dose

TL Thermo-luminescence

TLD Thermo-luminescent Dosimetry

TPS Treatment Planning System

TV Target Volume

VOI Volumes of Interest

List of Figures

Chapter (1)	
Theoretical aspects Page 1	No.
Fig. (1.1): 3D treatment planning for a patient with a lung tumor	y 25
Fig. (1.4): Multiple beams delivery, between each irradiation the gantry rotates to the next predefined angle	33 34 e. cm,
Fig. (1.7): Dose profile at depth showing variation of dose across the field Co-60 beam, source - to - surface distance = 80 cm, depth 10 cm, field size surface=10x10 cm. Dotted line indicates geometric field boundary at a 10cm depth.	ze at
Fig. (1.8): Isodose distributions for different - quality radiations. A: 200 kVp, source to surface distance (SSD)=50 cm, half -value layer = 1.0 mm Cu, field size=10×10 cm. B: ⁶⁰ Co, SSD=80 cm, field size=10x10 cm. Fig. (1.9): Graphical representation of volume of interest as defined in "ICRU" reports No. 50 and 62,1999. Fig. (1.10): Dose volume histogram for ideal situation (the solid line) and clinical situation (the dashed line).	41 52 for

Chapter (2)

				_
Materi	als a	and N	/leth	ods

Pa	ge i	N	O
- 4	5~	٠,	•

	Fig. (2.7): Pinpoint Chamber (0.015 cm ³)70
	Fig. (2. 8): Water Phantom71
	Fig. (2.9): CT Adaptive for Radiotherapy73
	Fig. (2.10): Inguinal nodes are targeted more precisely using fused CT/PET
	images77
	Fig. (2.11): Dose distribution of a proton beam to treat prostate cancer78
	Fig. (2.12): Surface dose rendering of a head and neck IMRT plan displays
	the dose distribution on the surface of the tumor, adjacent brain stem, and
	left parotid gland79
	Fig. (2.13): Eclipse displays percentage difference and distance-to-agreement values to compare
	r
	Chapter (3)
	Results and Discussions
	Fig. (3.1): Relation between percentage relative dose vs. distance from
	fields junction for one photon beam individually. Photon has 6.0
	MV energy and 20 cm x 20cm86
•	Fig. (3.2): Relation between percentage relative dose vs. distance from
	fields junction for the case of two photon beams with 6.0 MV energy and
•	20 cm x 20 cm field size adjoined87
•	Fig. (3.3): Relation between relative dose and the abutment regions widths
	for the matching techniques. Graphs show a change in structure between the
	0.1 and 0.5 cm abutment region widths. Regions wider than 0.3 appear to
	have a similar curve structure
	nave a shintar curve structure

 Fig. (2.3): Movement of Collimator system.
 66

 Fig. (2.4): MLCs.
 67

 Fig. (2.5): Unidose Dosimeter
 68

 Fig. (2.6): Semi flex Chambers Type 31010, 31013
 69

and optical field dimension / distance system......64

Fig. (2.2): Collimator Assembly showed upper and lower collimator

Fig. (3.4): Relation between relative dose and abutment region width
focused on the abutmen region widths ranged between 0.1cm to 1.0
cm89
Fig. (3.5): Measurements profiles of two adjacent photon beams, with 6.0 MV, and 20 cm x 20 cm field size, adjoined with 0.1 cm separation
Fig. (3.6): Measurements profiles of two adjacent photon beams, with 6.0 MV and 20 cm x 20 cm field size, adjoined with 0.5 cm
separation
then with 0.10 cm abu
MV and 20 x 20 cm field size, adjoined with 0.5 cm separation and then with 0.5 cm a
arrangement
Fig. (3.10): Technique uses the same field arrangement as the classical Cranio-Spina (CS) technique (two lateral brain fields, 1–2 posterior spine fields))
Fig. (3.11): Skin gap between the spine fields rotated to AP
orientations
Fig. (3.12): Calculation of collimator
rotation
Fig (3.13): Dose profile for field junctions before applying collimator rotation and the gap
Fig. (3.14): Dose profile through junction after collimator rotation and ga
Fig. (3.15): Field matching between breast and supra-clavicular field in planning system
Fig. (3.16): Dosimetry evaluation for matching and hot-and cold-spots in matching gap (a) and dosimetric film for two-segment asymmetric breast field (b) Superposition of calculated (plain) and measured (dashed) iso-
doses
Fig. (3.18): Axial Plan for Right Breast cancer in TPS.

Fig. (3.19): Axial, coronal and sagital views for gap between three fields	,
technique for breast cance	.104
Fig. (3.20): Plan sum for Breast and Supra-clav	
Fig. (3.21): 3D display for matching between breast fields and supra-clav	r
field	.106
Fig. (3.22): Dose profile for the gap between supra-clav field and breast	
fields	.107
Fig. (3.23): Dose profile for SSD matches without gap and 3D usual techniques	.108
Fig. (3.24): dose profile for 3D asymmetric and 3D non-coplanar techniques	.109
Fig. (3.25): Dose Volume Histogram (DVH) and Dose display for differe	nt
organs	110
Fig. (3.26): dose profile at depth 2.0 cm without gap	.112
Fig. (3.27): Dose profile at depth 2.0 cm with gap	.112
Fig. (3.28): Dose profile for 3D usual techniques	113
Fig. (3.29): Dose profile for 3D asymmetric technique	114
Fig. (3.30): Dose profile for 3D non-coplanar technique	115