Impact of Non-Invasive Ventilation on the outcome of the extubated chronic hypercapnic patients in the Respiratory Intensive Care Unit at Ain Shams University specialized Hospital

Thesis Submittedfor Partial Fulfillment of M.D. Degree in Chest Diseases

Presented by
Mahmoud Mohammad Mahmoud Abd Elhameed
M.B., B. Ch, M Sc in Chest Diseases

Under supervision of **Professor Taher Abd El-Hamid El-Naggar**

Professor of Chest Diseases AinShamsUniversity

Associate Professor Tamer Mohammed Ali

Associate Professor of Chest Diseases AinShamsUniversity

Doctor Eman Badawy Abd Al-Fattah

Lecturer of Chest Diseases Ain Shams University

> Faculty of Medicine AinShamsUniversity 2018

Acknowledgment

Thanks first and last to AUAN for granting me to accomplish this work, as we owe to him for his great care, support and guidance in every step in our life.

I would like to express my cordial appreciation and infinite gratitude to *Prof.Taher El-Naggar*, Trofessor of Chest Diseases, Faculty of Medicine, Ain Shams University, to allow me to pursue this topic that helped me to far see new horizons.

I would like to express my deep gratitude and admiration to Associate Prof. Tamer MohammedAli Associate Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his guidance and advice along the entire course of the study.

I am also grateful to *DoctorEman Badawy Abd Al-Fattah*decturer of Chest Diseases, Faculty of Medicine, Ain Shams University, for her willing assistance and continues encouragement.

Lastly, I would like to express my deep thanks to all the staff of Chest Department, Ain Shams University for their encouragement and helpful advices.

Abbreviations

%	Percent	
≥	More than or equal to	
≥ < > ≤ °C	Less than	
>	More than	
<u> </u>	Less than or equal to	
°C	degree Celsius	
ABG	Arterial blood gas analysis	
AE	Acute Exacerbation	
AHRF	Acute hypercapnic respiratory failure	
ALS	Amyotrophic lateral sclerosis	
APRV	Airway pressure–release ventilation	
ARDS	Acute Respiratory Distress Syndrome	
ARF	Acute respiratory failure	
ASD	Atrial septal defect	
ATS	American Thoracic Society	
BiPAP	Bi-level positive airway pressure	
BMI	Body mass index	
bpm	Breath per minute	
CaO2	Arterial oxygen content	
CBC	Complete blood count	
CcO2	Capillary oxygen content	
CHRF	Chronic hypercapnic respiratory failure	
cm	Centimeter	
CNS	Central nervous system	
CO2	Carbon dioxide	
COPD	Chronic Obstructive Pulmonary Disease	
CPAP	Continuous positive airway pressure	
CvO2	Mixed venous oxygen content	
CWD	Chest wall diseases	
DILD	Diffuse interstitial lung diseases	
dL	Deciliter	
e.g	Example given	
ECG	Electrocardiography	
ePEEP	Extrinsic positive end-expiratory pressure	

EDC	Evanor con acceptator acceptator	
ERS	European respiratory society	
ETT	Endotracheal Tube Respiratory frequency	
f R	Respiratory frequency	
FEV1	Forced expiratory volume in 1st second	
Fig	Figure Figure	
FiO2	Fraction of inspired oxygen	
FRC	Functional residual capacity	
FVC	Forced vital capacity	
g H2O	Gram	
	Water	
Hb	Hemoglobin	
HCO3	Bicarbonate	
Hg	Mercury	
HRF	Hypercapnic respiratory failure	
i.e	id est (that is)	
I/E	Inspiratory–expiratory ratio	
ICU	Intensive Care Unit	
ILD	Interstitial lung disease	
IMV	Intermittent mandatory ventilation	
iPEEP	Intrinsic positive end-expiratory pressure	
K	Constant	
Kg L	Kilogram	
\mathbf{L}	Liter	
m2	Meter square	
min.	Minute	
MIP	Maximal inspiratory pressure	
ml	Milliliter	
mm	millimeter	
MRSA	Methicillin Resistant Staphylococcus aures	
MV	Mechanical Ventilation, Minute ventilation	
NAVA	Neurally adjusted ventilatory assist	
NIV	Non-invasive ventilation	
NMD	Neuro-muscular disorders	
NSIP	Non-specific interstitial pneumonia	
O2	Oxygen	
OHS	Obesity hypoventilation syndrome	
OSAHS	Obstructive sleep apnea hypopnea syndrome	

P	Probability	
PaCO2	Partial arterial carbon dioxide Pressure	
PAO2	Pressure of alveolar oxygen	
PaO ₂	Partial arterial Oxygen Pressure	
Patm	Barometric atmospheric pressure	
PAV	Proportional assist ventilation	
PC	Personal Computer	
PEEP	Positive end-expiratory pressure	
PFTs	Pulmonary function tests	
pН	Power of Hydrogen	
PH2O	Water vapor pressure at 37°C	
PiO2	Pressure of inspired oxygen	
PO2	Partial pressure of oxygen	
PRVC	Pressure-regulated volume-control ventilation	
PSV	Pressure support ventilation	
Qs/Qt	The shunt fraction	
R	Respiratory exchange ratio	
r	Coefficient of correlation	
RICU	Respiratory Intensive Care Unit	
RQ	Respiratory quotient	
RSBI	Rapid shallow breathing index	
SaO2	Arterial oxygen saturation	
SBT	Spontaneous breathing trial	
SD	Standard deviation	
SIMV	Synchronized intermittent mandatory ventilation	
t	Student T test	
Ti	Inspiratory time	
UIP	Usual interstitial pneumonia	
V/Q	Ventilation / Perfusion ratio	
VA	Alveolar ventilation	
VAP	Ventilator Associated Pneumonia	
VCO2	Carbon dioxide production	
VSD	Ventricular septal defect	
VSV	Volume-support ventilation	
VT	Tidal volume	
χ2	Chi-Square test	

List of Tables

No.	Title	
Table 1	Distinctions between Acute and Chronic Respiratory Failure	
Table 2	Expected changes in pH and HCO3- for a 10 mm Hg change in PaCO2 (acute or chronic)	21
Table 3	Complications of Acute Respiratory Failure	28
Table 4	Indications and Goals for mechanical ventilation	38
Table 5	Modes of Non-invasive Positive-Pressure Ventilation	70
Table 6	Indications and contraindications for NIV	73
Table 7	Demographic characteristics	99
Table 8	Smoking history.	99
Table 9	Co-morbid Diseases.	100
Table 10	Cause of hypercapnic respiratory failure (HRF), history of mechanical ventilation and extubation	100
Table 11	FiO2 and ABG at time of extubation	102
Table 12	FiO2 and ABG at final outcome	104
Table 13	Final outcome	106
Table 14	Relation between cause of hypercapnic respiratory failure and the final outcome in group A	108
Table 15	Relation between cause of hypercapnic respiratory failure and the final outcome in group B	108
Table 16	Relation between co-morbid diseases and final outcome in group A	109
Table 17	Relation between co-morbid diseases and final outcome in group B	109
Table 18	correlation between each of duration of MV, number of SBT, FIO2, and ABG at the final outcome in group A	110
Table 19	correlation between each of duration of MV, number of SBT, FIO2, and ABG at the final outcome in group B	110

Table 20	Relation between co-morbid diseases and	111
	ABG at the final outcome among group A	
Table 21	Relation between co-morbid diseases and	112
	ABG at the final outcome among group B	
Table 22	Relation between cause of hypercapnic	113
	respiratory failure and ABG at the final	
	outcome among group A & B	

List of Figures

No.	Title		
Figure 1	Potential causes of Respiratory Failure	7	
	according to the site of the disorder.		
Figure 2	Andreas Vesalius (1514-1564)	35	
Figure 3	An example of the Drinker and Shaw 3		
	negative-pressure ventilator (iron lung).		
Figure 4	Bjorn Ibsen (1915-2007)	37	
Figure 5	The pressure, volume, and flow to time	45	
	waveforms for controlled ventilation.		
Figure 6	The pressure, volume, and flow to time	46	
	waveforms for assist-control ventilation		
Figure 7	The pressure, volume, and flow to time	50	
	waveforms for pressure-regulated		
	volume-controlled ventilation		
Figure 8	The pressure, volume, and flow to time	53	
	waveforms for proportional-assist		
	ventilation		
Figure 9	The pressure, volume, and flow to time	54	
	waveforms for airway pressure-release		
	ventilation		
Figure 10	Description of the setup used for NAVA	55	
Figure 11	The flow to time waveform	60	
	demonstrating auto-positive end-		
	expiratory pressure (auto-PEEP)		
Figure 12	Different types of NIV masks	82	
Figure 13	Orofacial NIV mask	94	
Figure 14	Venturi mask with its different flow	95	
	pieces		
Figure 15	Comparison between both groups as	101	
	regards history of non-invasive		
	ventilation	101	
Figure 16	Comparison between both groups as	101	
	regards number spontaneous breathing		
	trials		

Figure 17	Comparison between both groups as	103	
	regards PO2 at time of weaning		
Figure 18	Comparison between both groups as	103	
	regards O2sat at time of weaning		
Figure 19	Comparison between both groups as	105	
	regards pH in ABG at final outcome		
Figure 20	Comparison between both groups as	105	
	regards PO2 and PCO2 in ABG at final		
	outcome		
Figure 21	Comparison between both groups as	107	
	regards the final outcome		
Figure 22	Comparison between both groups as	107	
	regards duration from extubation till final		
	outcome		
Figure 23	Relation between comorbidity and pH of	113	
	the ABG at the final outcome among		
	group B		

Contents

Introduction	1
Aim of work	2
Review of literature	
Chapter 1: overview on respiratory failure	3
Chapter 2: overview on mechanical ventilation	35
Subjects and Methods	89
Results	99
Discussion	115
Summary	128
Conclusion	134
Recommendations	135
References	136
Arabic Summary	

INTRODUCTION

Respiratory failure is a syndrome in which the respiratory system fails in one or both of its gas exchange functions: oxygenation and carbon dioxide elimination. In practice, it may be classified as either hypoxemic or hypercapnic (Lanken P, 1995).

Respiratory failure may be further classified as either acute or chronic. Although acute respiratory failure is characterized by life-threatening derangements in arterial blood gases and acid-base status, the manifestations of chronic respiratory failure are less dramatic and may not be as readily apparent (MacSweeney R. et al, 2011).

The need for mechanical ventilation (MV) is a frequent reason for admission to an intensive care unit (ICU). The principal indications for MV are airway protection and respiratory failure which are considered the most common vital organ failure seen in critically ill patients. Among ICU patients, 40–65% need MV during their ICU stay. Patients receiving MV require a complex, well-organized, and technically sophisticated level of care (**Reddy R and Guntupalli K, 2007**).

Use of Non-invasive ventilation (NIV) may provide a means of reducing the duration of invasive mechanical support for intubated patients with ARF. Unlike for conventional invasive ventilation, NIV is achieved with an oro-nasal, nasal or total face mask connected to a ventilator and does not require an indwelling artificial airway. Through NIV one can (i) administer oxygen, (ii) augment the inhaled volume and (iii) apply extrinsic positive end-expiratory pressure (ePEEP) to counteract intrinsic positive end-expiratory pressure (iPEEP) (Ambrosino N and Vagheggini G, 2008).

AIM OF THE WORK

The aim of this work was to study the impact of non-invasive ventilation on the outcome of the extubated chronic hypercapnic patients and comparing it versus conventional Oxygen therapy in the Respiratory Intensive Care Unit at Ain Shams University Specialized Hospital during the period from October 2013 till May 2015.

Overview on Respiratory Failure

Definition:-

Respiratory failure can be defined as a condition in which the respiratory system fails in one or both of its main gas exchanging functions; which are oxygenation of, and carbon dioxide elimination from, mixed venous (pulmonary arterial) blood. Hence, respiratory failure is considered to be a syndrome rather than a single disease (Lanken P, 1995).

In clinical practice, respiratory failure is defined as an arterial oxygen tension (PaO2) value of less than 60 mm Hg while breathing room air with or without an arterial carbon dioxide tension (PaCO2) of more than 50 mm Hg. These values are measured using arterial blood gases analysis (MacSweeney R. et al, 2011).

Classification of respiratory failure:-

Respiratory failure can be classified using different classifications.

1- According to PaO2 and PaCO2 levels:-

■Type 1 (hypoxemic) respiratory failure:

It is characterized by an arterial oxygen tension (PaO2) lower than 60 mm Hg with a normal or sometimes low arterial carbon dioxide tension (PaCO2). This is considered the most common type of respiratory failure, and it can be caused with almost all acute diseases of the lungs, which generally involve fluid filling or collapse of alveolar units. Some examples of conditions associated with type 1 respiratory failure are cardiogenic or non-cardiogenic pulmonary edema, pneumonia, and pulmonary hemorrhage (Confalonieri M. et al, 1999).

■Type 2 (hypercapnic) respiratory failure:

In this type, the level of arterial carbon dioxide tension (PaCO2) is higher than 50 mm Hg. Hypoxemia is usually common in patients with hypercapnic respiratory failure who are breathing room air. The pH depends on the level of bicarbonate anion, which, in turn, is dependent on the duration over which the hypercapnia has developed. Common etiologies include drug overdose, neuromuscular disease, chest wall abnormalities, and severe airway disorders (eg, asthma and chronic obstructive pulmonary disease [COPD]) (Plant P. et al, 2000).

■Type 3 (Peri-Operative) respiratory Failure:

In this type, the increased atelectasis due to low functional residual capacity (FRC) which is usually caused by abnormal abdominal wall mechanics in the peri-operative period often results in type 1 or type 2 respiratory failure and can be prevented by: selecting anesthetic or operative technique, posture, incentive spirometry, adequate post-operative analgesia, attempts to lower intra- abdominal pressure (Glossop A. et al, 2012).

■Type 4 (Shock) respiratory Failure:

Type 4 describes respiratory failure occurring in patients who are intubated and ventilated during management of shock. The ultimate goal of ventilation of those patients is to stabilize gas exchange and to remove the burden of respiratory muscles, lowering their oxygen consumption (Midelton G. et al, 2002).

2- According to duration of development:-

Respiratory failure can be classified on the basis of the duration over which it has developed into either acute or chronic respiratory failure. Although acute respiratory failure is often associated with lifethreatening abnormalities in arterial blood gases and

acid-base balance, the manifestations of chronic respiratory failure are less dramatic and may not be as readily apparent (MacIntyre N, Huang Y, 2008).

In case of acute hypercapnic respiratory failure, the condition develops over the period of minutes to hours; therefore, pH is less than 7.3 as there is no time available for renal compensation while in chronic respiratory failure which develops over several days or longer, allowing time for renal compensation and an increase in bicarbonate concentration. Therefore, the pH usually is only slightly decreased (**Brochard L. et al, 1995**).

In contrast to hypercapnic respiratory failure, The differentiation between acute and chronic hypoxemic respiratory failure cannot easily be made using the analysis of arterial blood gases, so, The use of clinical markers of chronic hypoxemia, such as polycythemia or cor pulmonale, suggest a long-standing disorder indicating chronicity (Esan A. et al, 2010).

Table (1): Distinctions between Acute and Chronic Respiratory Failure

Category	Characteristic
Hypercapnic respiratory failure	Pa _{CO2} >45 mm Hg
Acute	Develops in minutes to hours
Chronic	Develops over several days or longer
Hypoxemic respiratory failure	$Pa_{O_2} < 55 \text{ mm Hg when } F_{O_2} \ge 0.60$
Acute	Develops in minutes to hours
Chronic	Develops over several days or longer

(Source: Grippi A. et al, 2015)