Sonothrombolysis in Acute Ischemic Stroke Thesis

Submitted for Partial Fulfillment of M.D. Degree in Neurology

Presented by

Ahmed Mohammed Elsadek

(M.B., B. Ch., M.Sc. Neuropsychiatry)

Under Supervision of

Dr. Amira Ahmed Zaki Dwedar

Professor of Neuropsychiatry Faculty of Medicine-Ain Shams University

Dr. Mahmoud Haron Elbalkimy

Professor of Neuropsychiatry Faculty of Medicine-Ain Shams University

Dr. Samia Ashour Mohammed

Professor of Neuropsychiatry Faculty of Medicine-Ain Shams University

Dr. Azza Abdelnasser Abdelaziz

Professor of Neuropsychiatry Faculty of Medicine-Ain Shams University

Dr. Ramez Reda Mostafa

Lecturer of Neuropsychiatry Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2012

List of Contents

Title	Page
♦ Introduction	1
♦ Aim of the Work	4
◆ Chapter 1: Acute Middle Cerebral Artery Stroke	. 5
◆ Chapter 2: Role of Transcranial Doppler in Diagnosis of Acute Middle Cerebral Artery Stroke	.24
◆ Chapter 3: Predictors of Recanalization of Middle Cerebral Artery	.40
◆ Chapter 4: Thrombolysis in Acute Middle Cerebral Artery Stroke	.50
◆ Chapter 5: Sonothrombolysis in Acute Middle Cerebral Artery Stroke	.75
♦ Subjects and Methods	89
♦ Results	93
♦ Case Presentations	
♦ Discussion	120
Summary and Conclusion	126
♦ Recommendations	128
♦ References	129
♦ Appendix	
Arabic Summary	

List of Tables

Table No	Title Page	,
Table (1)	Signs of stenosis and occlusion29	ı
Table (2)	Guidelines for the early management of adults with ischemic stroke (AHA/ASA Guideline)	
Table (3)	Recommendations for the specific treatment of acute ischemic stroke	ı
Table (4)	Age in both groups94	
Table (5)	Sex in both groups94	
Table (6)	Interval from onset to TCD in both groups95	1
Table (7)	Atrial Fibrillation (AF) in both groups95	
Table (8)	Mean admission blood pressure in both groups96)
Table (9)	Basic laboratory results (fasting blood sugar, total cholesterol, LDL)96	,
Table (10)	Basic MRA and Carotid duplex results (Complete ipsilateral MCA occlusion on MRA, significant ipsilateral internal carotid artery (ICA) stenosis or occlusion)97	•
Table (11)	Symptomatic and asymptomatic MFV before TCD98	,
Table (12)	NIHSS before TCD in both groups98	
Table (13)	Change of symptomatic side TCD MFV in both groups10	0
Table (14)	Change of asymptomatic side TCD MFV after insonation in both groups10	2
Table (15)	Description of the change in blood flow velocity 60 minute after TCD among group110	2

List of Tables (Cont.)

Table No	Title	Page
Table (16)	Description of the change in blood flow velocity 60 minute after TCD among group 2	103
Table (17)	Comparison between group 1 and group 2 as regard change in blood flow velocity 60 minute after TCD	103
Table (18)	Description of Recanalization 60 minutes after TCD in group 1 (patients)	105
Table (19)	Description of Recanalization 60 minute after TCD among group 2	106
Table (20)	Comparison between group1 and group 2 as regard Recanalization 60 minute after TCD	107
Table (21)	Comparison between symptomatic and asymptomatic sides at different time intervals as regard MFV among group 1	108
Table (22)	Comparison between symptomatic and asymptomatic sides at different time intervals as regard MFV among group 2	110
Table (23)	Change of NIHSS after insonation in both group	112
Table (24)	Comparison between patients among group1 with no/partial recanalization and patients with complete recanalization as regard change in NIHSS	113
Table (25)	Correlations between change in blood flow velocity and change in NIHSS	115
Table (26)	Correlations between each of age, Interval from onset to TCD, MFV and NIHSS before TCD monitoring with the change in blood flow velocity among all cases	116

List of Tables (Cont.)

Table No	Title	Page
Table (27)	Correlations between each of mean blood pressure, sugar, lipid and the change in blood flow velocity	117
Table (28)	Relationship between patient characteristics and the change in blood flow velocity 60 minute after TCD	118
Table (29)	Comparison between cases with no/partial recanalization and patients with complete recanalization as regard personal and medical characteristics	119
Table (30)	Significant and non significant results	121

List of Figures

Figure No	Title	Page
Figure (1)	Normal magnetic resonance angiogram demonstrating intracerebral vascular anatomy	8
Figure (2)	Diffusion-weighted imaging lesion patterns	22
Figure (3)	The three main windows for accessing the intracranial arteries	25
Figure (4)	A typical transcranial Doppler spectra with velocity and intensity scale on the left and right axis, respectively	27
Figure (5)	Middle cerebral artery (MCA)—anterior cerebral artery (ACA) tracing at the division of the internal carotid artery into the MCA (tracing above baseline) and the ACA (below baseline)	27
Figure (6)	Transcranial Doppler wave form demonstrating an emboli	37
Figure (7)	Structure of the ischemic penumbra	52
Figure (8)	The future of acute stroke therapy	74
Figure (9)	Thrombus appearance on magnetic resonance angiography	78
Figure (10)	Reported controlled clinical trials of ultrasound-enhanced systemic thrombo-lysis for acute ischemic stroke	83
Figure (11)	Change of symptomatic side TCD MFV in both groups	96
Figure (12)	Change of asymptomatic side TCD MFV after insonation	97

List of Figures (Cont.)

Figure No	Title	Page
Figure (13)	Comparison between group1 and group2 as regard change in blood flow velocity 60 minute after TCD	100
Figure (14)	Description of Recanalization 60 minutes after TCD in group 1	101
Figure (15)	Description of Recanalization 60 min. after TCD among controls	102
Figure (16)	Comparison between group1 and group2 as regard Recanalization 60 minute after TCD	103
Figure (17)	Comparison between symptomatic and asymptomatic sides at different time intervals as regard MFV among group1	105
Figure (18)	Comparison between symptomatic and asymptomatic sides at different time intervals as regard MFV among group 2	107
Figure (19)	Change of NIHSS after insonation	108
Figure (20)	Comparison between patients among group1 with no/partial recanalization and patients with complete recanalization as regard change in NIHSS	110
Figure (21)	Correlations between change in blood flow velocity and change in NIHSS	111
Figure (22)	Comparison between patients with no/partial recanalization and patients with complete recanalization as regard personal and medical characteristics	116

List of Abbreviations

ACA	:	Anterior cerebral artery
AchA	:	Anterior choroidal artery
AF	:	Atrial fibrillation
АНА	:	American heart association
ASA	:	American stroke association
вні	••	Breth holding index
BUN	:	Blood urea nitrogen
СВС	:	Complete blood count
CLOTBUST	•	Combined lysis of thrombus in brain ischemia using transcranial ultrasound and systemic TRA
CO ₂	:	Cargon dioxide
CT	:	Computed pomography
CTA	:	Computed tomography angiography
C-US	:	Continuous ultrasound
DEFUSE	••	Diffusion weighted imaging for understanding stroke evolution
DIAS	••	Desmoteplase in acute stroke
DWI	••	Diffusion weighted imaging
ECASS	:	European cooperative acute stroke study
ECG	:	Electrocardiography
EMS	:	Emergency management of stroke
ESO	:	European stroke organization

List of Abbreviations (Cont.)

EXTEND	:	Extending the time for thrombolysus in neurological emergency deficit
FBS	:	Fasting blood sugar
FDA	:	Food and Drug administration
HITS	:	High intensity signals
i.e.	:	That is
IA	:	Intraarterial
ICA	:	Internal carotid artery
IMS	:	Interventional management of stroke
IQR	:	Interguartile range
LDL	:	Low density lipoprotein
LFUS	:	Low-frequency ultrasound
M1	:	Proximal segment of middle cerebral artery
M_2	:	Distal segment of middle cerebral artery
M 4	:	Terminal brances of middle cerebral artery
МВ	:	Microbubbles
MCA	:	Middle cerebral artery
MES		Microenbolic signal
Mets	:	Metabolic syndrome
MFV	:	Mean flow velocity
MHZ	:	Megahertz

List of Abbreviations (Cont.)

MRCI	:	Mechanical embolus removal in cerebral ischemia
MRI	:	Magnetic resonance imaging
N	:	Number
NIHSS	:	NIH stroke scale
NINDs	:	National institute of neurological disorders & stroke
NS	:	Non significant
PCA	:	Posterior cerebral artery
PET	:	Position emission tomography
PFO	:	Patent foramen ovale
PI	:	Pulsatility index
PS	:	Power & sample size
RBS	:	Rabdom blood sugar
r-tPA	:	Recombinant tissue plasminogen activator
S	:	Significant
SBP	:	Systolic blood pressure
SD	:	Standard deviation
SICH	:	Symptomatic intracranial hemorrhage
SPSS	:	Statistical package for social science
Std	:	Standard

List of Abbreviations (Cont.)

TCCD	:	Transcranial color coded duplex
TCD	:	Transcranial Doppler
TIA	:	Transient ischemic attack
TIBI	:	Thrombolysis in brain ischemia
TIMI	:	Thrombolysis in myocardial infarction
TOE	:	Transoesophageal echo
tPA	:	Tissue plasminogen activator
TRUMBI	:	Transcranial low frequency ultrasound mediated thrombolysis in brain ischemia
TUCSON	:	Transcranial ultrasound in clinical sonothrombolysis
UET	:	Ultrasound-enhanced thrombolysis
us	:	Ultrasound

Introduction

Acute ischemic stroke is characterized by the sudden loss of blood circulation to an area of the brain, resulting in sudden onset of a focal neurologic deficit (*Lopez et al.*, 2006).

Cerebrovascular disease was the second leading cause of death worldwide in 1990, killing more than 4.3 million people. It was also the fifth leading cause of lost productivity, as measured by disability-adjusted life years (DALYs) (*Flynn et al.*, 2008).

Transcranial Doppler (TCD) is a non-invasive, non-ionising, inexpensive, portable and safe technique that measures the velocity of blood flow through the brain's blood vessels (*Sarkar et al.*, 2007). So, it is helpful in the diagnosis of acute ischemic stroke as it can provide rapid information about major arterial occlusion or stenosis (especially middle cerebral artery occlusion), and also the hemodynamic status of the cerebral circulation, as well as monitoring of reperfusion and recanalization (*Alexandrov et al.*, 2009).

TCD has emerged as a tool to treat ischemic stroke since the last few years. The potential advantage of ultrasound (US) is to decrease the risk of systemic bleeding complications due to its site-specific effect. Moreover, external application is noninvasive and is readily available. A 2-MHz pulsed-wave diagnostic ultrasound beam provides real-time bedside monitoring of thrombolysis. It can augment residual flow and speed up thrombolysis, allowing patients to recover from stroke more rapidly and completely (*Alexandrov and Mikulik*, 2006).

Some recent researchers studied the effect of combined use of intravenous tissue plasminogen activator (TPA) and TCD ultrasound on recanalization of the occluded intracranial arteries, it shows that thrombolysis with intravenous tissue plasminogen activator (TPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug (*Alexandrov and Tsivgoulis*, 2007).

Low-frequency US with high power has been demonstrated to produce cavitations and fluid motion in the thrombus (Alexandrov and Molina, 2007). Some experimental studies use the administration of micro bubbles (MB) (e.g. galactose-based air-filled MB & sulphur hexafluoride-filled MB) as it may augment the effect of ultrasound-enhanced systemic thrombolysis in acute stroke. Bubble structural characteristics may influence the effect of MB on sonothrombolysis (Rubiera et al., 2008). Other recent studies suggest that acceleration of thrombolysis using pulsed wave US is effective & can enhance thromblysis even without rt-PA (Eggers et al., 2005). Although some experimental studies and

pilot clinical evidence show that TCD has role in the enhancement of thrombolysis with or even without rt-PA (*Alexandrov and Tsivgoulis*, 2007), yet more studies are needed to evaluate the potential of TCD ultrasound technology to enhance thrombolysis & to study the effect of vascular risk factors (e.g DM, hyperlipidemia) as predictors of recanalization.

Aim of the Work

Our aim is to study the effect of continuous insonation using 2-MHz transcranial Doppler US on the recanalization rate and the short-term outcome of subjects with acute ischemic stroke due to Middle Cerebral Artery (MCA) occlusion.