

A Comparative Study between Different Sedation Regimens in Diagnostic Pediatric Cardiac Catheterization

A thesis

Submitted for partial fulfillment of MD degree in Anesthesiology

Presented by

Noura Mohamed Youssri Ahmed Mahmoud

(M.B.B.Ch) Ain Shams University (M.Sc) Degree in Anesthesiology Faculty of Medicine - Ain Shams University

Supervised by

Professor Doctor/Amir Ihrahim Salah

Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Professor Doctor/ Bassel Mohamed Essam Nour El Din

Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Doctor/ Ahmed Mohamed El Sayed El Hennawy

Assistant Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Doctor/ Sahar Mohammed Talaat

Assistant Professor of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2015

Contents

	Page
Contents	I
List of abbreviations	II
List of tables	\mathbf{V}
List of figures	VII
Introduction	1
Aim of the work	٤
Review of Literature	
Chapter 1 : Cardiac Catheterization	٥
Chapter 2: Procedural sedation in Pediatric Cardiac Catheterization	47
Chapter 3: Pharmacology of drugs used	64
Patients and Methods	90
Results	1.5
Discussion	۱۳۱
English summary	100
References	109
Arabic summary	

List of Abbreviations

AAP American Academy of Pediatrics

AAPD American Academy of Pediatric Dentists

ACEP American College of Emergency Physicians

ANOVA Analysis of Variance

Ao Aorta

AoP Aortic Pressure **AS** Aortic Stenosis

ASA American Society of Anesthesiologists

ASD Atrial Septal Defect

AVSD Atrio Ventricular Septal Defect

BIS Bispectral index

BUN Blood Urea Nitrogen

CBC Complete Blood Count

CHD Congenital Heart Diseases

CHF Congestive Heart Failure

CMRI Cardiac Magnetic Resonance Imaging

CO Cardiac Output

COA CoArctation

CT Computer Tomography

d-TGV d-Transposition of the Great Vessels

DTP Demerol Thorazine Phenergan

DORV Double Outlet Right Ventricle

ECG ElectroCardioGram

ED Emergence Delirium

Hb Hemoglobin

HR Heart Rate

IPPV Intermittent Positive Pressure Ventilation

IQR Interquartile Range

JCAHO Joint Commission on Accreditation of Healthcare

Organization (US)

LA Local Anesthetic

LAP Left Atrial Pressure

MAP Mean Arterial blood Pressure

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

Mv Mixed systemic venous blood

PA Pulmonary Artery

PACU Post Anesthetic Care Unit

PAED Pediatric Anesthesia Emergence Delirium scale

PAP Pulmonary Artery Pressure

PDA Patent Ductus Arteriosus

PEE Positive End Expiratory Pressure

PFO Patent Foramen Ovale

PGE1 Prostaglandin E1

PONV Postoperative Nausea and Vomiting

PS Pulmonary Stenosis

PSA Procedural Sedation and Analgesia

PV Pulmonary Vein

PVR Pulmonary Vascular Resistance

RAP Right Atrial Pressure

RR Respiratory Rate

RV Right Ventricle

RVOT Right Ventricular Outflow Tract

SD Standard Deviation

SpO2 digital Oxygen Saturation

SVR Systemic Vascular Resistance

TAPVR Total Anomalous Pulmonary Venous Return

TGA Transposition of the Great Arteries

TOF Tetralogy Of Fallot

VO₂ Oxygen Consumption (mL/minute),

VSD Ventricular Septal Defect

Q p Pulmonary flow

Q s Systemic flow

List of Tables

		Page
Table (1-1)	Estimated oxygen consumption per body surface area in ml/min/m ² according to age, sex and heart rate.	12
Table (1-2)	Normal cardiac catheterization data.	15
Table (1-3)	Common procedures in catheterization laboratory.	48
Table (2-1)	Levels of sedation.	٣4
Table (2-2)	Equipment/monitoring guidelines for non-operating room anesthesia (NORA) locations.	50
Table (2-3)	Cardiac tray medications.	٥1
Table (2-4)	Suitable agents for sedation during cardiac catheterization.	٥7
Table (M-1)	Ramsay Scale for Sedation.	1.1
Table (M-2)	Three-tier observational scale for patient responses.	1.1
Table (M-3)	Recovery Scoring System Modified from Steward.	1.7
Table (M-4)	Pediatric Anesthesia Emergence Delirium Scale (PAED).	1.5
Table (R-1)	Comparison between the three different groups as regards age (in years), sex, weight (in Kg), Height (in cm), ASA, duration of the procedure (in min).	1.0
Table (R-2)	Comparison between the 3 groups regarding diagnosis.	١٠٦
Table (R-3)	Comparison between the 3 groups regarding HR (in b/m).	١٠٨
Table (R-4)	Comparison between the 3 studied groups as regards mean arterial blood pressure (in mmHg).	111
Table (R-5)	Comparison between the 3 studied groups regarding SPO ₂ (%).	۱۱۳
Table (R-6)	Comparison between the 3 groups as regards (RR).	١١٦

		Lists
Table (R-7)	Comparison between PVR at 15 and 30 min after induction within each group and among the 3 groups.	114
Table (R-8)	Comparison between SVR at 15 and 30 min within each group and among the 3 groups.	119
Table (R-4)	Comparison between the 3 groups regarding the patient's responses to positioning using Three-tier observational scale as number of patients.	171
Table (R-1·)	Comparison between the 3 groups regarding the patient's responses to LA infiltration using Threetier observational scale as number of patients.	171
Table (R-11)	Comparison between the 3 groups regarding the patient's responses to cannulation using Three-tier observational scale as number of patients.	172
Table (R-1 ^r)	Comparison between the 3 groups regarding the patient's intra-operative movement using Three-tier observational scale as number of patients.	172
Table (R- 1 ^r)	Comparison between the 3 groups as regards airway intervention.	174
Table (R-1 [£])	Comparison between the 3 groups regarding recovery time.	175
Table (R-1°)	Comparison between the 3 studied groups regarding PAED score represented as median and IQR.	177
Table (R-17)	Comparison between the 3 studied groups regarding number of patients with a PAED score >10, >12, ≥16 (different cut off values for ED)	127
Table (R- 1 [∨])	Comparison between the 3 studied groups regarding incidence of complications.	129
Table (R-1 ^{\(\Delta\)})	Comparison between the 3 groups as regard time to discharge from pediatric angiography unit.	130

List of Figures

		Page
Figure (1-1):	Pulmonary valvuloplasty by balloon dilatation	۲5
Figure (1-2):	Vascular angioplasty and endovascular stent	۲6
Figure (1-3):	GORE HELEX® Septal Occluder used for ASD repair.	۲7
Figure (3-1):	Chemical structure of propofol	٦3
Figure (3-2):	Chemical structure of dexmedetomidine	٧3
Figure (3-3):	Chemical structure of ketamine	۸4
Figure (R-1):	Comparison between the 3 groups regarding HR (in b/m).	1.9
Figure (R-2):	Comparison between the 3 studied groups as regards mean arterial blood pressure (in mmHg).	117
Figure (R-3):	Comparison between the 3 studied groups regarding SPO ₂ (%).	112
Figure (R-4):	Comparison between the 3 groups as regards (RR).	114
Figure (R-5):	Comparison between PVR at 15 and 30 min within each group and among the 3 groups.	١١٨
Figure (R-6):	Comparison between SVR at 15 and 30 min within each group and among the 3 groups.	١٢.
Figure (R-7):	Comparison between the 3 groups regarding the patient's responses to positioning infiltration using Three-tier observational scale.	123
Figure (R-8):	Comparison between the 3 groups regarding the patient's responses to LA infiltration using Three-tier observational scale.	123
Figure (R-9):	Comparison between the 3 groups regarding recovery time.	170
Figure (R-10):	Comparison between the 3 studied groups regarding PAED score represented as median and IQR.	١٢٨
Figure (R-11):	Comparison between the 3 studied groups regarding number of patients with a PAED score >10 , >12 , ≥ 16 (different cut off values for ED).	۱۲۸

Introduction

Heart diseases are relatively common congenital anomalies, they occur in approximately 0.4 to 1% of all live births (*Marelli et al.*, 2007). Since pediatric cardiac catheterization is one of the gold standards for detailed diagnosis of congenital cardiac anomalies, to resolve complex anatomy and measure different hemodynamic parameters, they have been commonly performed during the past recent years (*Bernard et al.*, 2011).

Cardiac catheterization requires a co-operative, calm and motionless patient, to avoid complications especially perforation. Considering the typical nature of the pediatric age group, sedation is often required in pediatric catheterization (*Bernard et al.*, 2011).

The primary goals of sedation during pediatric cardiac catheterization are to insure immobility and cardiac vascular stability, as perturbations in hemodynamic parameters may lead to changes in intra-cardiac pressures, and pattern of intra-cardiac and extra-cardiac shunts, thus interfering with evaluation of the congenital heart disease, and type of surgical intervention needed (*Malik et al.*, *2011*). The hemodynamic parameters can also be significantly altered by supplemental O2, hypo or

hyperventilation, well positive pressure ventilation. as as Therefore, a spontaneously breathing patient on room air is preferred by the cardiologist. In order to achieve these goals different anesthetic drugs have been used. The most recent and commonly used agents are ketamine, propofol and dexmedetomidine (Abbas et al., 2012).

Ketamine is one of the commonest drugs used for sedation in pediatric cardiac catheterization, because of its combined sedative and analgesic effects, and its ability to maintain respiratory drive and airway reflexes. However, it has significant side effects including prolonged recovery time, hemodynamic alterations such as tachycardia, hypertension, and tendency to increase pulmonary vascular resistance, and emergence delirium (*Roelofse*, 2010).

Propofol is characterized by both smooth induction of sedation, short duration of action, and rapid recovery. However, its diminishing effect on systemic vascular resistance and mean arterial pressure can limit its use in children with congenital heart diseases (*Akin et al.*, 2005).

Dexmedetomidine is a selective $\alpha 2$ adrenergic agonist, with sedative, analgesic, and anxiolytic effects, that has been recently used in various procedural sedation in the pediatric group. The

fact that it has minimal effect on respiration and hemodynamic parameters makes it particularly suitable for sedation during pediatric cardiac catheterization, but not as a sole agent (Munro et al., 2007).

Recently, combinations of different sedative agents are preferred to single agents, as they reduce the doses for each individual agent, thereby minimizing their side effects on hemodynamics and respiration, which are the primary objectives during pediatric cardiac catheterization (Ülgey et al., 2012).

Aim of the work

This study clinically evaluated and statistically compared different techniques used in sedation for diagnostic pediatric cardiac catheterization in order to figure out the most possible ideal technique for this kind of procedure with most benefits and least side effects.

Chapter (1): Pediatric Cardiac Catheterization

Cardiac catheterization and angiography have transformed the care of children with congenital heart diseases (CHD) and have greatly increased the safety and efficacy of surgery for CHD. Cardiac catheterization opened the way for study of the heart in a manner analogous to what ECG had done for its electrical function a ½ century earlier (*Braunwald*, 2003).

The history of catheterization dates back to 1844, when Claude Bernard inserted a mercury thermometer into the carotid artery of a horse and advanced it through the aortic valve into the left ventricle to measure blood temperature (*Bourassa*, 2005).

Later in 1929, Werner Forssmann, a German surgeon, performed the 1st cardiac catheterization on living human by inserting a urological catheter in his own forearm and guided it into his right atrium. In return, he was fired from his position at the hospital but later won the Nobel Prize in 1956 (*Forssmann*, 1929; *Braunwald*, 2003).

The use of cardiac catheterization and angiography as a diagnostic tool was first described in man by Cournand and in children with congenital heart disease by Bing et al in 1947 (Cournand and Ranges, 1941; Bing et al., 1947).

Interventional catheterization was first developed in 1953 by Rubio-Alvarez to treat pulmonary stenosis (*Rubio-Alvarez et al.*, 1953). In 1966 Rashkind and Miller performed a balloon atrial septostomy which was the first pediatric and the first intra cardiac transcatheter procedure (*Rashkind and Miller*, 1966; *Abbas et al*, 2012).

Types of pediatric cardiac catheterization

There are 2 types of pediatric cardiac catheterization. The first is used for determination of detailed cardiac anatomy and measurement of physiological pressures values and shunt volume (Diagnostic catheterization) and the second is for treatment of certain structural heart defects non surgically using specially designed catheters and implantable devices delivered through cardiac catheters (Therapeutic catheterization) (*Park*, 2014).

All diagnostic catheterizations may lead to the necessity for an interventional procedure. As a consequence, the capability to proceed with the interventional procedure should be a requirement of the individual and institution that will perform the diagnostic portion of the catheterization. Individual centers must assess their abilities as they relate to this ability when determining which catheterization cases they might perform (*Feltes et al.*, 2011).

Diagnostic Cardiac Catheterization and Angiocardiography:

Cardiac catheterization and angiocardiography usually constitute the final definitive diagnostic test for most cardiac patients (*Park*, 2014).

Due to progresses in the field of noninvasive imaging procedures –transthoracic and transoesophageal echocardiography as well as cardiac computer tomography (CT) and magnet resonance imaging (MRI) – anatomic situation of the patient is usually well known. For this reason, in a lot of cases diagnostic cardiac catheterizations only have to be performed for preoperative evaluations to determine physiological pressure values and shunt volumes as well as oxygen saturation in the different sections of the circulation (*Vittinghoff*, 2009).