

Possible role of apoptotic genes which could open the gate for Hepatitis C virus therapy

Thesis Submitted for M.Sc in Microbiology

By

Esraa Sobhy Abd El-hamid

(B.Sc. Microbiology, 2008) Ain Shams University

Supervisors

Prof. Dr. Saher Ahmed Shoman

Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Abd El Rahman Zekri Prof. Dr. Hanaa Mahmoud Alm El-din

Molecular Virology &Immunology Unit, Cancer Biology Department National Cancer Institute, Cairo University& Egypt Molecular Virology &Immunology Unit, Cancer Biology Department National Cancer Institute, Cairo University & Egypt

Faculty of Science Ain Shams University& Egypt (2016)

Approval Sheet

Possible role of apoptotic genes which could open the gate for Hepatitis C virus therapy

By

Esraa Sobhy Abd El-hamid

Submitted to

Microbiology department

Faculty of Science, Ain Shams University

Supervision Committee	Approved
Prof. Dr. Saher Ahmed Shoman	
Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University	
Prof. Dr. Abd El Rahman Zekri	
Molecular virology &immunology unit, Cancer	
Biology Department, National Cancer Institute, Cairo University	sity
Prof. Dr. Hanaa Mahmoud Alm El-din	
Molecular virology &immunology unit, Cancer	
Biology Department, National Cancer Institute, Cairo University	sity

Approval Sheet

Name of student: Esraa Sobhy Abd-Elhamid

Title of thesis: Possible role of apoptotic genes which could open

the gate for hepatitis C virus therapy

Supervisors

Prof. Dr.\ Saher Ahmed Shoman

Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr.\ Abd El Rahman Zekri

Molecular virology &immunology unit, Cancer Biology Department, National Cancer Institute, Cairo University

Prof. Dr.\ Hanaa Mahmoud Alm Eldin

Molecular virology & immunology unit, Cancer Biology Department, National Cancer Institute, Cairo University

Reviewers

Prof. Dr.\ Salwa El-sayied Abd El-hamid

Professor of medical Microbiology, Faculty of medicine (girls), El-azhar University

Prof. Dr.\ Mohamed Labieb Salem

Professor of immunology, Zoology Department, Faculty of Science, Tanta University

Prof. Dr.\ Saher Ahmed Shoman

Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University

بِسْم اللهِ الرَّحْمنِ الرَّحِيم

{رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَمْتَكَ الَّتِي أَنْعَمْتَ عَلَيَ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَذْ خِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ }

{ سورة النمل- آيه ١٠٩ }

ACKNOWLEDGEMENT

First, and forever, all thanks to Allah by whose grace this work had been completed and by whose grace all my life is arranged in the best way.

I would like to express my deepest respect and sincere gratitude to *Prof. Dr. Saher Ahmed Shoman*, Professor of Microbiology Department, Faculty of Science, Ain Shams University, for her precious supervision. She was the main reviser for my scientific steps to achieve this degree.

I am greatly indebted and would like to express my sincere appreciation toward *Prof. Dr. Abd El Rahman Zekri*, Professor of Molecular Virology &Immunology, Cancer Biology Department, National Cancer Institute, Cairo University. He was the main funded for my project.

I cannot forget the great effort which exerted by *prof. Dr. Hanaaa Mahmoud Alm El-din*, Professor of Molecular virology &Immunology, Cancer Biology Department, National Cancer Institute, Cairo University. She was the first teacher for me in academic writing.

Many thanks are due to Molecular virology & immunology, Cancer Biology Department, National Cancer Institute, Cairo University. Especially *Dr. Nehal Hussien* for teaching; supporting and making me pass the first steps in learning more techniques in Molecular Biology.

Dedication

I dedicate this work with all my love to my mother and my father.

My sisters Nehad and Hasnaa, my brothers Ahmed and Mohammed

Finally Dr. Eman and Roqeia

Thanks

Esraa Sobhy Abd El-hamid

List of Contents

	Page
List of tables	iii
List of figures	iii
List of abbreviations	iv
Introduction	1
Review of literature	4
1) Apoptosis	4
1.1) what is apoptosis?	4
1.2) Apoptosis History	4
1.3) Phases and time course of apoptosis	7
1.4) Morphologic hallmarks of apoptosis	8
1.5) Apoptosis and necrosis: the spectrum of cell death	10
1.6) Is Apoptosis an Irreversible Process?	14
1.7) Mechanisms of Apoptosis	16
I.7.1) Apoptosis Is Caused by Caspases	16
1.7.2) Extrinsic Pathway	19
1.7.3) Intrinsic Pathway	20
1.7.4) Perforin/granzyme Pathway	23
1.7.5) Execution Pathway	27
2) Hepatitis C Virus	29
2.1) HCV Structure and Organization	29
2.1.1) HCV Structural Proteins	30
#Core Protein	30
# Envelope Glycoproteins	31
2.2) Genetic Heterogeneity and Quasispecies	32
2.3) Epidemiology	33
2.3.1) Hepatitis C Virus (HCV) Worldwide	33
2.3.2) Hepatitis C in Egypt	34
2.4) HCV Pathogenesis	35
2.4.1) Acute and Chronic Hepatitis C	35
2.4.2) Oxidative Stress	35
2.4.3) Steatosis	36
2.4.4) HCC	37
3) Viruses and Apoptosis	38
3.1) Role of Oncogenic Viruses in Apoptosis	39

LIST OF CONTENTS

3.1.1) Hepatitis C Virus and Apoptotic Signalling Pathways	
# The Hepatitis C Virus Genome	
3.1.1.1) Apoptotic Processes Induced by HCV Infection	
# The Core Protein	
# HCV Envelope Proteins E1 and E2	
4) Apoptosis from Pathogenesis to therapy	
Materials and methods	
Materials	
1) HCV E1/E2 Construct Synthesis	
2) Culturing of Huh7	
2.1) Maintenance of the human cell line in the laboratory	
2.2) Collection of cells by trypsinization	
2.3) Cryopreservation of cells	
3) Transfection of constructs in Huh7	
4) Culturing of Hep G2	
5) Transfection of Hep G2 with Serum	
5.1) Viral inoculation and sample collection	
5.2) Measurement of viral load in transfected Hep G2 cells	
6) Apoptosis assay by flow cytometry	
7) RT2PCR Array Assay	
7.1) cDNA synthesis step	
7.2) Real-Time PCR for RT2 Profiler PCR Arrays	
Results	
1) Morphology of transfected cells using light microscope	
1.1) Morphology of Hep G2 transfected cells	
1.2) Morphology of Huh7 transfected cells	
2) Measurement of viral load in transfected Hep G2 cells	
3) Apoptosis detection with flow cytometry assay	
3.1) Apoptosis rates in transfected Hep G2 cells	
3.2) Apoptosis rates in transfected Huh7 cells	
4) Differential expression of apoptotic genes in Huh7 cells infected	
with E1/E2	
Discussion	
Summary	
Dafarancas	

List of Tables

		Page
1	Differential up-regulated expression of apoptotic genes	
	after E1/E2 transfection in Huh7 cells in comparison to	
	control group	72
2	Differential down regulated expression of apoptotic genes	
	after E1/E2 transfection in Huh7 cells in comparison to	
	control group	73

List of Figures

I	Morphology of apoptosis
II	Main differences between apoptosis and necrosis
III	Schematic representation of apoptotic events
IV	The proteins encoded by the HCV genome
1	Diagrammatic shape for the experiment
2	Reduced cell Proliferation in transfected cells
3	GFP- positive Huh7 cells transfected with E1/E2
4	Standard curve of transfected Hep G2 cells
5	Early apoptosis rates of Hep G2cells
6	Early apoptosis rates of Huh7 cells
7	Scatter plot
8	Volcano plot
9	Fold regulation of up and down expressed genes
10	Suggested cellular pathway showing HCV E1/E2
	Involvement in apoptosis

List of Abbreviations

AIF Apoptosis inducing factor

APAF1 Apoptotic protease-activating factor 1

Ape1 Apurinic/apyrimidinic endonuclease

Asp Aspartic acid

ATP Adenosine triphosphate

Bad BCL2-Associated Agonist of Cell Death

BAG3 BCL2-Associated athanogene 3

BCL10 B-cell /lymphoma protein 10

BID BH3 interacting domain death agonist

BIK BCL2-interacting killer (apoptosis-inducing)

BIRC3 Baculoviral IAPrepeat containing 3

BNIP2 BCL2/adenovirus E1B 19 kDa interacting protein 2

c- FLIP FLICE-like inhibitory protein

CAD Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase,

and dihydroorotase

CASP6 Caspase 5, apoptosis-related cysteine peptidase

CCM Complete culture medium

CD95 Cluster of differentiation 95, TNF receptor superfamily member

CIDEA Cell Death-Inducing DFFA-Like Effector A

CRADD CASP2 and RIPK1 domain containing adaptor with death domain

CTLs Cytotoxic T lymphocytes

CYCS Cytochrome c, somatic

DAPK1 Death-associated protein kinase 1