Assessment of Liver Cell Apoptosis In Obese Children With Suspected Nonalcoholic Fatty Liver Disease(NAFLD)

Thesis

Submitted for the partial fulfillment of Master degree *in Pediatrics*

By

Magda El-Sherbiny Abdo Sarhan

(M.B,B.ch) Mansoura University (2004)

Supervised by

Prof. Dr. Heba Hasan Elsedfy

Professor of Pediatrics
Faculty of Medicine-Ain Shams University

Asst. Prof. Amel Abd Elmagied El-Faramawy

Asst. Professor of Pediatrics Faculty of Medicine-Ain Shams University

Asst. Prof. Nermeen Helmy Mahmoud

Asst. Professor of Clinical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2012

First of all, I wish to express my endless thanks to ALLAH for giving me the help to perform this work

I would like to express my deepest thanks and highest appreciation to Prof. Dr. Heba Hasan Elsedfy Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces for the initiation, progress and completion of this work.

I would like to express my deepest thanks and highest appreciation to Asst. Prof. Dr. Amel Abd Elmagied El Faramawy Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous support, enriching observations and sincere advice throughout this work.

I owe special thanks and gratitude to Asst. Prof. Dr. Nermeen Helmy Mahmoud Assist. Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her precious help and fruitful guidance.

Also, I would like to convey my special thanks to my family for their constant support.

Magda Elsherbiny Sarhan

LIST OF CONTENTS

Title	Page No.
List of Contents	i
List of Tables	ii
List of Figures	iv
List of Abbreviations	vi
Introduction	1
Aim of the work	3
Review of Literature	4
• Chapter (1): Nonalcoholic fatty liver disease	4
• Chapter (2): Cytokeratin-18 Fragments	55
Subjects and methods	61
Results	74
Discussion	108
Summary	124
Conclusion	126
Recommendations	127
References	128
Arabic summary	_

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Various causes of hepatic steatosis	23
Table (2):	Burnt grading system for NASH	42
Table (3):	Burnt staging system for NASH	42
Table (4):	NASH Clinical Research Network Scoring System for NAFLD	43
Table (5):	Comparison between cases and controls as regards age	75
Table (6):	Comparison between cases and controls as regards sex distribution	75
Table (7):	Comparison between cases and controls as regards clinical history taking	76
Table (8):	Comparison between cases and controls as regards clinical examination	77
Table (9):	Comparison between cases and controls as regards Anthropometric measures	78
Table (10):	Comparison between cases and controls as regards results of liver function tests and metabolic profile	79
Table (11):	Comparison between cases and controls as regards liver size by U/S	80
Table (12):	Comparison between cases and controls as regards U/S findings	81
Table (13):	Comparison between cases and control as regards CK18	82
Table (14):	Correlation between CK 18 and blood pressure and items of clinical examination	83
Table (15):	Correlation between CK 18 and Anthropometric measurements	85
Table (16):	Correlation between CK 18, liver function tests and Metabolic Profile	89

LIST OF TABLES CONT.

Tab. No.	Title	Page No.
Table (17):	Correlation between CK 18 and US finding	93
Table (18):	Comparison between cases with fatty liver proven by U/S and without as regards Anthropometric measures	95
Table (19):	Comparison between cases with fatty liver proven by U/S and without as regards liver functiontests and metabolic profile	96
Table (20):	Comparison between control, fatty liver and no fatty liver as regards CK18	97
Table (21):	Comparison between CK 18, mild, moderate and severe cases with fatty liver proven by U/S	98
Table (22):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards clinical examination	99
Table (23):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards anthropometric measurements	101
Table (24):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards liver size by U/S	102
Table (25):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards liver functiontests and metabolic profile	103
Table (26):	•	104
Table (27):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards U/S	106
Table (28):	fatty liver grade	106
	presence of fibrosis by U/S	107

LIST OF FIGURES

Fig. No.	Title	Page No.
Fig. (1):	Proposed pathogenesis of NASH	13
Fig. (2):	Nonalcoholic fatty liver disease 1	30
Fig. (3):	Nonalcoholic fatty liver disease 2	31
Fig. (4):	Nonalcoholic fatty liver disease 3	32
Fig. (5):	Nonalcoholic steatohepatitis 1	32
Fig. (6):	Nonalcoholic steatohepatitis 2	34
Fig. (7):	Nonalcoholic steatohepatitis 3	35
Fig. (8):	Top; Typical type 1 (adult) NASH pattern Bottom; Type 2 (pediatric) NASH pattern	37
Fig. (9):	histological features of each stage of fatty liver disease	41
Fig. (10):	Diagnostic flow chart for children with suspected NAFLD or NASH	47
Fig. (11):	The ROC curve comparing obese cases and controls	82
Fig. (12):	Correlation between CK18 and SBP	84
Fig. (13):	Correlation between CK18 and DBP	84
Fig. (14):	Correlation between CK18 and liver span	85
Fig. (15):	Correlation between CK18 and weight	86
Fig. (16):	Correlation between CK18 and weight SDS	86
Fig. (17):	Correlation between CK18 and BMI	87
Fig. (18):	Correlation between CK18 and waist circumference	87
Fig. (19):	Correlation between CK18 and hip circumference	88
Fig. (20):	Correlation between CK18 and waist/hip ratio	88
Fig. (21):	Correlation between CK18 and abdominal fat thickness	89
Fig. (22):	Correlation between CK18 and ALT	90
Fig. (23):	Correlation between CK18 and AST	91
Fig. (24):	Correlation between CK18 and Cholesterol	91
Fig. (25):	Correlation between CK18 and triglycerides	92
Fig. (27):	Correlation between CK18 and LDL	93

LIST OF FIGURES CONT.

Fig. No.	Title	Page No.
Fig. (28):	Correlation between CK18 and liver size by ultrasound.	96
Fig. (29):	The ROC curve comparing cases with fatty liver proved by U/S (40) and cases without fatty liver (10)	97
Fig. (30):	Mean SBP, DBP in cases of fatty liver with and without elevated liver enzymes	100
Fig. (31):	Liver span in cases of fatty liver with and without elevated liver enzymes	100
Fig. (32):	Liver size by U/S in cases of fatty liver with and without elevated liver enzymes	102
Fig. (33):	Comparison between cases of fatty liver with and without elevated liver enzymes as regards CK18	104
Fig. (34):	The ROC curve comparing the cases with fatty liver proved by U/S with elevated liver enzymes (7) and without elevated liver enzymes(33)	105
Fig. (35):	without elevated liver enzymes as regards U/S fatty	106
Fig. (36):	without elevated liver enzymes as regards presence	106
	of fibrosis by U/S	107

LIST OF ABBREVIATIONS

Abbrev.		Meaning
11βHSD1	:	11 Beta hydroxysteroid dehydrogenase 1
ALT	:	Alanine aminotransferase
ASH	:	Alcoholic steatohepatitis
AST	:	Aspartate aminotransferase
AUROC	:	Area under the receiver operating characteristic
BP	:	Blood pressure
BMI	:	Body mass index
CF	:	Cystic fibrosis
CHC	:	Chronic hepatitis C
CK-18	:	Cytokeratin 18
CRN	:	Clinical research network
CRP	:	C-reactive protein
CT	:	Computed tomography
DBP	:	Diastolic blood pressure
DM	:	Diabetes melliatus
DNL	:	De novo lipogenesis
ELISA	:	enzyme linked sandwich immunoassay
ER Stress	:	Endoplasmic reticulum stress
FA	:	Fatty liver
FFA	:	Free fatty acids
GGT	:	Gamma glutamyl transferase
G/I Ratio	:	Glucose/ insulin ratio
GSH-Px	:	Glutathione peroxidase
HBV	:	Hepatitis B virus
HCC	:	Hepatocellular carcinoma
HCV	:	Hepatitis C virus
HMG COA	:	3-Hydroxy-3 methyglutaryl coenzyme A

LIST OF ABBREVIATIONS (CONT...)

Abbrev.		Meaning
HOMA-IR	:	Homeostasis model assessment of insulin resistance
HSCs	:	Hepatic stellate cells
ΙΚΚβ	:	Inhibitor of nuclear factor kappa-b kinase subunit beta.
IL-6	:	Interleukin-6
IL-8	:	Interleukin-8
INR	:	International normalizing ratio
IR	:	Insulin resistance
IRS	:	Insulin receptors
ISAK	:	International Society for the Advancement of Kinanthropometry
LDL	:	Low density lipoprotein
LFTS	:	Liver function tests
mg/dl	:	Milligram per deciliter
mm	:	Millimeter
mm.Hg	:	Millimeter mercury
MRI	:	Magnetic resonance imaging
MRS	:	Magnetic resonance spectroscopy
NAFLD	:	Non alcoholic fatty liver disease
NAS	:	NAFLD activity score
NASH	:	Nonalcoholic steatohepatitis
NF-KB	:	Nuclear factor kappa B
NHANES	:	National Health and Nutrition Examination Survey
NHBPEP	:	National High Blood Pressure Education Program
NHMRC	:	National Health and Medical Research Council
PPAR	:	Peroxisome proliferative activated receptor
ROC	:	receiver Operating Characteristic

LIST OF ABBREVIATIONS (CONT...)

Abbrev.		Meaning
ROS	:	Reactive oxygen species
SBP	:	systolic blood pressure
SD	:	Standard deviation
SREBP	:	Sterol regulatory element binding protein
TG	:	Triglycerides
TGF-β	:	Tissue growth factor-beta
THV	:	Terminal hepatic venule
TNF-α	:	Tumor necrosis factor alpha
TPS	:	Tissue polypeptide specific antigen
U/L	:	Unit/liter
U/S	:	Ultrasonography
UDCA	:	Urosdeoxy cholic acid
VLDL	:	Very low density lipoproteins
W/H	:	Waist to hip ratio
Wt.	:	Weight

Introduction

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in children and adolescents in the United States (*Shneider et al.*, 2006).

NAFLD is a clinico-pathologic entity defined as presence of hepatic steatosis in individuals who drink little or no alcohol and represents a spectrum of liver disease ranging from blandsteatosis to nonalcoholic steatohepatitis (NASH) (*Kleiner et al.*, 2005).

The development of NAFLD in children requires the coexistence of multiple factors. Among the numerous risk factors, many are similar to risk factors that have been identified in the adult population, including obesity, visceral adiposity, insulin resistance, and presence of other features of the metabolic syndrome. Other risk factors, such as race, ethnicity, sex, and distribution and progression of pubertal development, are exclusive to pediatric NAFLD (*Alisi*, 2009).

Most patients with NAFLD have no or few symptoms. Infrequently, patients may complain of fatigue, malaise and dull right upper quadrant abdominal discomfort (*Adams et al.*, 2005).

NAFLD is most often diagnosed in asymptomatic people after the detection of raised aminotransferases during routine

screening or abnormal hepatic imaging performed for another purpose. Radiographic evidence of fatty infiltration of the liver, combined with an elevation of aminotransferases as a marker of hepatic inflammatory change, can be used to make a presumed diagnosis of NASH in the absence of liver biopsy (*Stephen et al.*, 2002).

Liver biopsy remains the only reliable way of diagnosing NASH, however, it's an invasive procedure, therefore, there's an urgent need to develop and validate a simple, non invasive test that distinguish NASH from NAFLD and determines stage and grade of the disease (*Campos et al.*, 2008).

Cytokeratin 18 (CK18) is an intracellular protein released into the blood by both necrosis and apoptosis of hepatocytes (*Schutte et al.*, 2004).

Plasma CK18 levels are elevated in children with a clinical diagnosis of NAFLD relative to normal-weight children and overweight children without NAFLD. This suggests that plasma CK18 may have potential as a serologic marker of NAFLD in children. That, by itself, may have some value in clinical medicine because it could help to identify children with obesity-related liver disease among those with obesity (*Vos et al.*, 2008).

Aim of the Work