

NOVEL SYNTHESIS OF NANOLUBRICANT BY ARC DISCHARGE PROCESS

By

Hesham Mohamed Mohamed El-Sherif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

NOVEL SYNTHESIS OF NANOLUBRICANT BY ARC DISCHARGE PROCESS

By Hesham Mohamed Mohamed El-Sherif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Ali A-F. Mostafa	Prof. Dr. Mokhtar O. A. Mokhtar
Professor	Professor
Mechanical Design and Production	Mechanical Design and Production
Engineering Department	Engineering Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Prof. Dr. Bad	r S. N. Azzam

Professor
Mechanical Design and Production
Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

NOVEL SYNTHESIS OF NANOLUBRICANT BY ARC DISCHARGE PROCESS

By Hesham Mohamed El-Sherif Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Approved by the Examining Committee
Prof. Dr. Mokhtar Omar Abbas Mokhtar, Thesis Main Advisor
Prof. Dr. Badr Shaban Nagy Azzam, Member
Prof. Dr. Aly Ahmed Mustafa Khattab, Internal Examiner
Prof. Dr. Alaa Mohamed Ahmed El-Butch, External Examiner

(Faculty of Engineering, Mataria, Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

Engineer's Name: Hesham Mohamed Mohamed El-Sherif Hassan

Date of Birth: 29/11/1988 **Nationality:** Egyptian

E-mail: helsherif@eng.cu.edu.eg

Website: http://scholar.cu.edu.eg/hmmelsherif

+2 01156597918 **Phone:**

Address: Mechanical Design Lab, Room 15202, Faculty

of Engineering, Cairo University, Giza, Egypt.

Registration Date: 01/10/2011 **Awarding Date:**/..../...... Degree: Master of Science

Mechanical Design and Production Engineering **Department:**

Supervisors: Prof. Dr. Ali Abdul-Faatah Mostafa

> Prof. Dr. Mokhtar Omar Abbas Mokhtar Prof. Dr. Badr Shaban Nagy Azzam

Examiners: Porf. Dr. Mokhtar Omar Abass Mokhtar (Thesis main advisor)

> Porf. Dr. Badr Shaban Nagy Azzam (Member)

Prof. Dr. Aly Ahmed Mustafa Khattab (Internal examiner) Prof. Dr. Alaa Mohamed Ahmed El-Butch (External examiner)

(Faculty of Engineering, Mataria, Helwan University)

Title of Thesis:

Novel Synthesis of Nanolubricant by Arc Discharge Process

Kev Words:

Arc Discharge, Carbon Nanotubes, Carbon Blacks, Paraffin Oil, Nanolubricant.

Summary:

Recently, nanoparticles are used as additives to improve the tribological behavior of lubricating oil. This study is basically concerned with studying the tribological behavior of lubricated contents when introducing nano scale additive of carbon particles to lubricating oils.

A test apparatus was developed to synthesis carbon nanomaterials by arc discharge between two pure graphite electrodes in liquid medium of deionized water or paraffin oil. Also a microcontroller circuit was devised and attached to apparatus in order to maintain the arc with continuous and safe operation.

Carbon Nanotubes (CNTs) was produced by arc discharge process from the anode material by using deionized water as discharge medium. It was found that the efficiency of the arc process range between ~15% and ~35%. The CNTs were added to commercial oil from the local market. It was found that addition of 0.01% of CNTs into Mobil Oil (20W50) reduces the coefficient of friction by ~35%, and improves the wear scratch length and width with average ~18% and ~20% respectively at loads below normal load of 84 N.

Carbon Black (CB) was synthesized by arc discharge in Medical-Grade Paraffin Oil (MGPO) medium with 23.7 C.st. kinematic viscosity. The source of the Carbon Blacks was the paraffin oil medium itself. The yield rate was ~58 times greater than the total-yield rate in case of applying arc in deionized water medium. The as-prepared MGPO from the arc discharge was tested and results indicated to reduction in its kinematic viscosity at 40°C by ~22%, increase in flash point by ~3%, reduction in coefficient of friction by ~29%, significant improvement in the wear scratch, and no effect on fire and pour points.

A set of experiments were conducted on an Industrial-Grade Paraffin Oil (IGPO) medium with 110 C.st. kinematic viscosity. Results from applying the arc discharge for 5 minutes indicates to decrease on the average oil kinematic viscosity at 40°C by ~13.6%, decrease on the average coefficient of friction by ~7.4%, and no effect on the flash and pour points.

It may be contributed that nanolubricant can be produced directly by arc discharge process in liquid paraffin oil medium. The arc discharge in paraffin oil can be applied industrially as a new stage of arc discharge for introducing CB nanoparticles into the oil before the next stages of addition of other additives.

Acknowledgments

At first, I am very grateful to my supervisors: Prof. Dr. Mokhtar O. A. Mokhtar, Prof. Dr. Ali A-F. Mostafa, Prof. Dr. Badr S. N. Azzam, professor of Machine Design & Engineering Tribology, Mechanical Design and Production Department, Cairo University. I don't only thank them for their moral guidance and extraordinary support throughout all phases of this work, but also for motivating discussion and enriching conversations about many topics of science, industry, history, and life. In addition, a special appreciation is to my main supervisor Prof. Mokhtar for his continuous moral encouragement to me and his patience on my progressive. I really consider him as a roll-model in research and life style. I hope always to find him in the best conditions.

Moreover, I appreciate all members of the Tribology and Spare Parts Center (TSPC), Cairo University, for their kind and moral help in accomplishing many tests during many phases of this thesis work.

Besides, I want to acknowledge Misr-Petroleum company for providing the raw paraffin oils needed in this research study. I wanted also to thank Eng. Mohamed Farid, research engineer at Misr-Petroleum for his cooperativeness and illustrations regarding the oil industry.

Furthermore, I would like to owe my appreciation to Egyptian Chemistry Foundation for the help in achieving some physical characterization of the paraffin oil during many phases of this work.

Additionally, I want to thank the Egyptian Petroleum Research Institute (EPRI) for the help in characterization the output morphology of nanoparticles by Transmission Electron Microscope (TEM). I want also to thank people there for their useful illustrations and cooperative feelings.

Finally, I owe my appreciation to many professors and TAs members from our faculty as well as to some students who have been encouraged me during this work and made it worthwhile experience.

Dedication

Dedicated to my beloved family ...

Table of Contents

ACK	NOWLEDGMENTS	I
DEDI	CATION	III
TABL	LE OF CONTENTS	V
LIST	OF FIGURES	IX
LIST	OF TABLES	XIV
LIST	OF ABBREVIATIONS	. XV
ABST	TRACT	VII
CHAI	PTER 1: INTRODUCTION	1
1.1.	NANOTECHNOLOGY	1
1.2.	TRIBOLOGY	1
1.3.	LUBRICATION	1
1.4.	NANOTRIBOLOGY	2
1.5.	NANOLUBRICANTS	2
1.6.	MOTIVATIONS BEHIND THESIS	3
1.7.	THESIS OUTLINE	3
CHAI	PTER 2 : LITERATURE REVIEW	5
2.1.	CRUDE OIL	5
2.2.	PARAFFIN OIL	6
2.3.	CARBON ALLOTROPES	6
2.4.	CARBON NANOTUBES (CNTS)	7
2.4.2	 Types of Carbon Nanotubes Morphology of Carbon Nanotubes by Transmission Electron Microscope Synthesis of Carbon Nanotubes 	8
2.4.3 2.4.3 2.4.3	3.1. Synthesis of Carbon Nanotubes by Arc discharge Method	9 11 11
2.5.	CARBON BLACK (CB)	13
2.5.2 2.5.2	Morphology of Carbon Black by Transmission Electron Microscope Production of Carbon Black by Oil Furnace Process	14 15

	2.5.3	3.2. Plastics:	16
	2.5.3	3.3. Electronic Devices:	16
	2.5.3	3.4. High Performance Coatings:	16
	2.5.3	3.5. Printing Inks:	16
	2.5.4	4. Difference between Soot and Carbon Black	16
2	.6.	ARC DISCHARGE PLASMA	17
	2.6.1	1. Types of Arc Discharge Plasma	18
	2.6.2	2. Synthesis of Nano-Sized powder by Arc Discharge Plasma	19
	2.6.3	3. Control System of Arc Discharge Process	20
		3.1. Maintaining a Continues Arc Discharge	
		3.2. Maintaining a Fixed Solution Temperature	
		4. Parameters Affecting the Arc Discharge Process	
		5. Review of Nanoparticles Produced by Arc Discharge in Liquid Mediums .	
		5.1. Non-Hydrocarbon Liquid Medium	
	2.6.5	5.2. Hydrocarbon Liquid Medium	23
2	.7.	NANOPARTICLES IN LUBRICATING OILS	28
		1. Classification of Nanoparticles in Lubricating Oils	
		2. Review of Carbon Base Nanomaterials in Lubricating Oils	
		2.1. Carbon Nanotubes in Lubricating Oils	
	2.7.2	2.2. Graphite Nanoparticles in Lubricating Oils	32
2		WHY NANOPARTICLES IMPROVE TRIBOLOGICAL BEHAVIOR OF	22
		THE LUBRICATING OIL	33
2		SUMMARY OF LITERATURE	
2	.10.	OBJECTIVE	34
C	'HAP	PTER 3 : EXPERIMENTAL WORK	35
3	.1.	TEST APPARATUS	37
		Mechanical Structure	
		2. Power Source	
		3. Monitoring Units	
		3.1. Monitoring Meters	
		3.2. Monitoring Sensors	
	3.1.4	4. Control Unit	40
3	.2.	MATERIALS	41
		l. Electrodes	
		2. Discharge Medium	
		2.1. Deionized Water	
	3.2.2	2.2. Paraffin Oil	41
_	3	ARC DISCHARGE IN DEIONIZED WATER	42

3	.3.1.	Preparation of Carbon Nanotubes	42
3	.3.2.	Calculations of the Resultant Total-Yield	43
3	.3.3.	Purification	44
3	.3.4.	Adding Carbon Nanotubes to Commercial Oil (Mobil 20W50)	45
3.4	. A	RC DISCHARGE IN PARAFFIN OIL	46
3	.4.1.	Arc Discharge in Medical-Grade Paraffin Oil (MGPO)	46
3	.4.2.	Arc Discharge in Industrial-Grade Paraffin Oil (IGPO)	47
3	.4.3.	Measurement of Yield Rate of Resultant Nanoparticles	48
3.5		HARACTERIZATION OF NANOMATERIALS BY TRANSMISSION LECTRON MICROSCOPE	49
3.6	. A	SSESSMENT OF OIL PHYSICAL PROPERTIES	50
3	.6.1.	Viscosity	50
		Flash/ Fire/ Pour Point	
3	.6.3.	Dispersion Study of Nanoparticles in Paraffin Oil	51
		Oil Elemental Analysis	
3.7	. A	SSESSMENT OF OIL TRIBOLOGICAL BEHAVIOR	53
3	.7.1.	Cross Cylinders	53
		Four-Ball Machine	
3	.7.3.	Ball-on-Disk Machine	56
CH	IAPT	ER 4 : RESULTS AND DISCUSSIONS	57
4.1	. A	RC DISCHARGE IN DEIONIZED WATER	57
4	.1.1.	Transmission Electron Microscope (TEM) of Carbon Nanotubes	57
4	.1.1.1	. Sample from Floating Material	57
4	.1.1.2	. Sample from Precipitated Material	57
4	.1.1.3	. Growth Mechanism of CNT from Arc Discharge in Deionized Water	60
4	.1.2.	Yield Rate of CNT from Arc Discharge in Deionized Water	61
4	.1.2.1	, i	
	.1.2.2	J J	
		Tribological Study of Carbon Nanotubes Additive in Commercial Oil	
		. Coefficient of Friction Study	
4	.1.3.2	. Wear Scratch Study	67
4.2	. A	RC DISCHARGE IN MEDICAL-GRADE PARAFFIN OIL (MGPO)	69
4	.2.1.	Morphology Analysis by Transmission Electron Microscope	69
		. Carbon Black Morphology	
		. Other Carbon Structures	
		Yield Rate of Resultant Nanoparticles	
		Dispersion Study	
1	2.4	Elemental Analysis Study	73
		Physical Properties Study	