

Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio as Prognostic Markers of Systemic Lupus Erythematosus Activity

Thesis

Submitted By Ahmed Mamdouh Ali Ali

M.B.B.CH

Resident of Internal medicine

For Partial Fulfillment of the Master Degree in Internal medicine

Supervised byProf. Dr. Amal Mostafa EL Afifi

Professor of Internal Medicine, Clinical Haematology & Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

Dr. Walaa El - Salakawy

Associate professor of Internal Medicine ,Clinical Haematology & Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

Dr. Mostafa Kamal El-Razzaz

Lecturer of Internal Medicine , Clinical Haematology & Bone Marrow Transplantation Faculty of Medicine, Ain Shams University

2017

ACKNOWLEDGEMENT

Praise be to **Allah** who says the right, which guides the way, prayer and peace upon our **Prophet Muhammad** Seal of the Prophets. Praising the **Almighty** as much as possible for giving me the strength to finish this work.

I would like to express my deepest gratitude and appreciation to principal supervisor *Prof. Dr. Amal Mostafa El Afifi*, Professor of Internal Medicine and Clinical Hematology Ain Shams University for her support, motherly encouragement, helpful suggestions and continuous supervision that made this work possible.

I am particularly grateful and thankful to *Dr. Walaa El Salakawy* assistant Professor of Internal Medicine and Clinical Hematology, Ain Shams University, for her valuable support, advices

Words are few and do fail to express my deepest gratitude to *Dr. Mostafa Kamal El Razzaz* Lecturer of Internal Medicine and Clinical Haematology Ain Shams University, for his continuous encouragement, valuable scientific observations, excellent guidance throughout the course of this work and for being the first advisor.

I will never forget my father, God rest his soul, whose dream was to witness this day. I will also never forget the sincere encouragement and great help of my mother, wife, brothers who helped me alot.

Finally, I wish also to express my deepest gratitude and thanks to **D**r **Elham Shaaban** Assistant professor of Reumatology Ain Shams

University for her help and great support.

Ahmed Mamdouh 2017

List of contents

Subject	Page
> Introduction	
Aim of work	
Review of literature	
 Understanding SLE 	4
Assessment of SLE Activity	37
NLR and PLR, definition, overview and recent studies	49
Patients and methods	
Results	64
Discussion	88
Summary & Conclusions	
Recommendations	106
References	107
Arabic summary	1

List of abbreviations

AAP	Acute abdominal pain
ACR	American College of Rheumatology
ANA	antinuclear antibodies
Anti-dsDNA	anti-double-stranded DNA
BILAG	British Isles Lupus Assessment Group
C3	Complement 3
C4	Complement 4
CBC	Complete blood count
CNS	Central Nervous System
CRC	colorectal cancer
CRP	C-reactive protein
CVD	Cardio Vascular Disease
DNA	deoxyribonucleic acid
eGFR	estimated glomerular filtration rate
ESR	erythrocyte sedimentation rate
ESRD	end-stage renal disease
EULAR	European League Against Rheumatism
FDA	Food and Drug Administration
GI	gastrointestinal
HCC	Hepato Cellular Carcinoma
HF	Heart Failure
HRQOL	health-related quality of life
IL	interleukin
LDL	low-density lipoprotein

LFTs	liver function tests
LUMINA	Lupus in Minorities: Nature versus Nurture
MPV	Mean Platelet Volume
NLR	Neutrophil-lymphocyte ratio
NPSLE	neuropsychiatric SLE
NSAIDS	Nonsteroidal anti-inflammatory drugs
OS	Overall Survival rate
PGA	Physician Global Assessment
PLR	Platelet to lymphocyte ratio
RA	Rheumatoid Arthritis
SCORAD	SCORing Atopic Dermatitis
SFI	SELENA-SLEDAI Flare Index
SLE	Systemic Lupus Erythematosus
SLEDAI	Systemic Lupus Erythematosus Disease Activity Index
SLICC	Systemic Lupus International Collaborating Clinics
TAK	Takayasu's arteritis
US	United States
WBC	White blood cell
WHO	World Health Organization

List of Figures

	List	Page
Fig. (1)	Clinical Features of SLE.	8
Fig. (2)	Butterfly sign of SLE.	27
Fig. (3)	SLE with bullous lesions.	27
Fig. (4)	Oral Ulcers of SLE.	27
Fig. (5)	Malar rash and lip DLE.	27
Fig. (6)	(SLICC) Classification Criteria Of SLE.	33
Fig. (7)	Comparison between groups as regard Hb%	69
Fig. (8)	Comparison between groups as regard Platelet count	70
Fig. (9)	Comparison between groups as regard Lymphocyte count	70
Fig. (10)	Comparison between groups as regard White Blood Cell count	71
Fig. (11)	Comparison between groups as regard Neutrophil count	72
Fig.(12)	Comparison between active and remission groups as regard SGPT	74
Fig. (13)	Comparison between active and remission groups as regard Serum Bilirubin	74
Fig. (14)	Comparison between active and remission groups as regard SGOT	75
Fig.(15)	Comparison between active and remission groups as regard S.Albumin	75
Fig. (16)	Comparison between groups as regard NLR	83
Fig. (17)	Comparison between groups as regard PLR	84

List of tables

	List	Page
Table (1)	SLEDAI Index Parameters	47
Table (2)	Comparison between active, remission and control	65
	groups regarding demographic characters	
Table (3)	Comparison between active, remission and control groups regarding CBC results	66
Table (4)	Comparison between active group and remission group regarding liver function test results	73
Table (5)	Comparison between active group and remission group regarding kidney function test results	76
Table (6)	Comparison between active group and remission group regarding immune markers results	77
Table (7)	Comparison between active group and remission group regarding ESR & CRP results	80
Table (8)	Comparison between active, remission and control groups regarding NLR & PLR results	81
Table (9)	Binary logistic regression In prediction of SLE active	85
	Cases	
Table (10)	Correlation between NLR , PLR and laboratory results in active SLE cases	86

Introduction:

Systemic Lupus Erythematosus is a chronic multi- organ autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary between people and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, hair loss, mouth ulcers, enlarged lymph nodes, fatigue (*Wu et al.*, 2016)

The global rates of SLE are approximately 20-70 per 100,000 people. In females, the rate is highest between 16-45 year of age. The lowest overall rate exists in Iceland and Japan. The highest rates exist in US and France. SLE, like many autoimmune diseases, affects females more frequently than males, at a rate of about 9 to 1.(*Danchenko et al.*, 2006)

Most patients with SLE develop kidney disease related to this systemic underlying disease process. Lupus nephritis is the most common and severe clinical manifestation of SLE (*Borchers et al.*, 2012)

White blood cell (WBC) count is a serum marker for systemic Inflammation.

Neutrophil-lymphocyte ratio is easily calculated by dividing neutrophil

count by the absolute lymphocyte count from a complete blood count. It is simple and cheap. Many studies have shown that NLR is positively associated with inflammatory, different malignancies, ischemic injury, cardiovascular disease and diabetic nephropathy. Also, Pericarditis and pericardial effusions in SLE are well recognized in SLE (Ahsen et al., 2013) (Li et al., 2014) (Maharaj et al., 2015)

Platelet to lymphocyte ratio (PLR) is an easy calculated parameter. Studies have shown that increased PRL is associated with neoplastic diseases like lung cancer .Moreover PLR is a better predictor than NLR for survival in patients with ovarian cancer. (*Feng et al.*, 2013)

The most commonly used parameters of lupus is called the SLE Disease Activity Index, and the acronym for it is SLEDAI. The SLEDAI index is a global score index developed for the assessment of SLE disease activity depending on many signs, laboratory investigations and other criteria of the disease (*Bombardier et al.*, 1992)

The Aim of the work:

The aim of this study is to evaluate the value of neutrophil lymphocyte ratio and platelet lymphocyte ratio as simple and cheap prognostic markers of the activity of systemic lupus disease.

Understanding SLE

Definition:

Systemic Lupus Erythematous (SLE) is a chronic multi organ autoimmune disease in which the body immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary between patients and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, loss, mouth ulcers, enlarged lymph nodes and fatigue (*Wu et al.*, 2016)

The global rates of SLE are reported as 20-70 per 100,000 people. In females, the rate is highest between 16-45 year of age. The lowest overall rate exists in Iceland and Japan. The highest rates exist in US and France. SLE, like many autoimmune diseases, affects females more frequently than males ,at a rate of about 9 to 1.(*Danchenko et al.*, 2006)

Genetic Consideration

Concordance rates for SLE among monozygotic and dizygot twins are 25% and 2% respectively, suggesting a significant genetic contribution (*Gaubitz*; 2006)

Pathogenesis of SLE

SLE is a complex disease process demonstrating dysregulation of the immune system at multiple levels .Autoantibodies against double-stranded DNA were first isolated from kidney specimens in patients with lupus nephritis in 1967(Simard and Costenbader, 2007)

One manifestation of SLE is abnormalities in apoptosis, a type of Programmed cell death in which aging or damaged cells are disposed of as a part of normal growth or functioning. In SLE, the body's immune system produces antibodies against itself, particularly against proteins in the cell nucleus. SLE is triggered by environmental factors that are unknown. The immune system must balance between being sensitive enough to protect against infection, and become sensitized to attack the body's own proteins (autoimmunity). During an immune reaction to a foreign stimulus , such as bacteria, virus, or allergen, immune cells that would normally be deactivated due to their affinity for self-tissues can be abnormally activated by signaling sequences of antigen-presenting cells. Thus triggers may include viruses, bacteria, allergens (IgE and other hypersensitivity), and can be aggravated by environmental stimulants such as ultraviolet light and

destruction of other cells in the body and exposure of their DNA, histones, and other proteins, particularly parts of the cell nucleus. The body's sensitized B-lymphocyte cells will now produce antibodies against these nuclear-related proteins. These antibodies clump into antibody-protein complexes which stick to surfaces and damage blood vessels in critical areas of the body, such as the glomeruli of the kidney; these antibody attacks are the cause of SLE. Researchers are now identifying the individual genes, the proteins they produce, and their role in the immune system. Each protein is a link on the autoimmune chain , and researchers are trying to find drugs to break each of those links. (*Mary;2008*)

Two major theories exist on how these auto-antibodies cause tissue damage. The first model suggests that anti-double-stranded DNA antibodies bind to circulating nucleosomes to form immune complexes that then get deposited in end-organ capillary beds such as the renal glomerulus and activate immune/inflammatory responses.(Sestak et al., 2005)

The second hypothesizes that these auto-antibodies cross-react with normal renal proteins causing tissue destruction (*Moser et al.*, 2009)

Medications, hormonal influences, and other factors such as sunlight have all been implicated in disease exacerbation. Drug-Induced lupus, most commonly due to procainamide, hydralazine, and quinidine, usually presents with disease involving the skin and joints with renal and CNS manifestations being much more rare (*Costenbader et al.*,2004)

Clinical Features

A variety of disease manifestations are exhibited by SLE patients ,with the heterogenity of presentations often delaying diagnosis. Common manifestations include rashes, photosensitivity, arthritis, pleuritis, pericarditis, neuropsychiatric disorders, and hematological disorders. There is also an array of less common but potentially hazardous complications.

Systemic lupus erythematosus

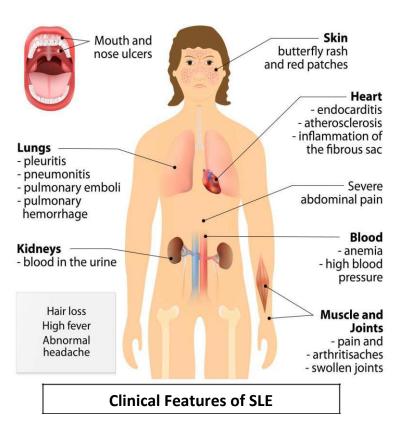


Fig (1): Clinical features of SLE (Rullo and Tsao, 2013)