ACKNOWLEDGMENT

I would like to express my profound gratitude to **Professor Doctor/ Azza Abdel Gawad Tantawy,** Professor of Pediatrics,

Faculty of Medicine Ain Shams University for her most valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to **Professor Doctor/ Moustafa Mohey Ahmady Barakat,** Professor of Pediatrics National Research Centre for his unique effort, considerable help, assistance and knowledge he offered me throughout the performance of this work.

I am deeply indebted to **Professor Doctor/ Ahmed Mohammed Aly,** Professor of Virology National Research Centre for his extremely help and support.

My appreciation to **Assistant Professor Doctor/ Manal Fuad El shamaa**, Assistant Professor of Pediatrics National Research Centre for her kind help and support.

My special thanks and deep obligation to **Doctor/Amira Abd Al Moneam Adly,** Lecturer of Pediatrics, Faculty of Medicine, Ain
Shams University for her continuous encouragement and supervision to continue this work as perfect as I hope it is.

I am deeply grateful for all the children with cancer and their families for participating in this study. I wish them rapid and complete recovery.

Mohamed Yassin

Background: Intensified chemotherapy increases susceptibility to infections. Respiratory viruses, including respiratory syncytial virus (RSV), parainfluenza virus and Influenza virus A and B are widespread in the community and easily transmitted to patients with hematological malignancy.

Aim of study: to assess the prevalence, risk factors and prognosis of community acquired respiratory viruses in severe lower respiratory tract infections in hospitalized pediatric cancer patients.

Patients and Methods: Ninety children with cancer admitted in the Children's Hospital, Ain Shams University during the period from March 31th, 2007 until September 30th, 2008 suffering from severe lower respiratory tract infections (LRTIs) were included. All were subjected to history and clinical examination; investigations included complete blood picture with differential leucocytic count, erythrocyte sedimentation rate, C - reactive protein and blood culture. Plain chest x-ray and computed chest tomography. A nasopharyngeal swab was examined by multiplex polymerase chain reaction for the following virus genomes: influenza A and B, parainfluenza serotypes 1 and 3 and respiratory syncytial virus. Clinical follow up of patients was done for assessment of clinical outcome.

Results: Hematologic malignancy was the underlying disease in 63.3% (57/90) patients. Forty five % (41/90) were in

remission and 54% (49/90) were in the induction stage. The prevalence of viral infection in the studied patients was 38.5% and 36.3% in patients with hematological and solid tumors respectively (P=0.83). The main presenting symptom of LRTI were fever, cough, expectoration and wheezy chest were prominent in 52.9% of patients with viral infection. Thirty two % (29/90) of patients developed respiratory distress in the form of tachypnea and chest retractions, 27% (8/29) of them were positive for viral infection.

Thirty two % (29/90) have positive blood cultures for bacteria (the main pathogen was Klebsiella) while 67.7% were negative.

Bacteria were identified as a single cause of LRTI in 17.7% (16/90), viruses in 27% (25/90), fungi in 4.4% (4/90) and mixed causes in 14% (13/90) {6.6% (9/13) mixed viral and bacterial, 4.4% (4/13) mixed bacterial and fungal}.

Nasopharyngeal swabs PCR were positive for viral infection in 34/90 (37.7%) patients, most of them were in May. Influenza virus was the commonest virus detected, being of type A in 16/90 (17%) cases, type B in 4/90 (4.4%) cases followed by Parainfluenza 1 in 9/90 cases (10%), and Parainfluenza 3 in 5 cases (5.5%). RSV was not detected in the studied patients.

Eighty seven patients (96%) were neutropenic 31/87 (35%) of them were positive for viral infection. 27/31 (79.4%) had

severe neutropenia, 3/31 (8.8%) had moderate neutropenia and 1/31 (2.9%) had mild neutropenia.

Seventy % of patients with viral infection had abnormal radiological findings in the form of increased bronchovascular marking in (58.8%), while (20.5%) had either patchy infiltrates or lung collapse in CT.

Eight patients (8.8%) were admitted to the pediatric intensive care unit; 6/8 (75%) for septic shock and disseminated intravascular coagulation and 2/8 for respiratory failure 62.5% had mixed viral and bacterial infections and 3/8 37.5% had mixed bacterial and fungal.

Six patients died during the course of the study (6.6%) from infection related sequelae: 2/6(33%) were having mixed viral and bacterial infections (one had parainfluenza 1 and the other had parainfluenza 3), 4/6 (66%) had mixed bacterial and fungal pathogen.

Conclusions: Respiratory viruses are common pathogens in LRTI, either as a single cause or mixed with bacterial pathogens in pediatric cancer patients. Viral etiology should be suspected with incorporation of antiviral therapy in those patients as there are no specific signs or symptoms. Mixed bacterial and viral infections had the worst prognosis. Rapid diagnostic tests for respiratory viruses should be incorporated in the routine workup

of patients with hematological malignancies as most of patients with viral infection had no specific radiological findings.

Abbreviations:

1. ALL	Acute lymphoblastic leukemia
2. AML	Acute myeloid leukemia
3. ANC	Absolute neutrophilic count
4. BAL	Broncho alveolar lavage
5. BFM	Berlin-Frankfurt-Munich
6. BMF	Bonn-Munich-Frankfurt
7. BMT	Bone marrow transplantation
8. BVM	Bronchovascular markings
9. CBC	Complete blood count
10.CML	Chronic myeloid leukemia
11.CMV	Cytomegalovirus
12.CNS	Central nervous system
13.CRP	C-reactive protein
14.CSF	Cerebro- spinal fluid
15.CT	Computed tomography
16. DIC	Disseminated intravascular coagulopathy
17.FUO	Fever of unknown origin
18.G-CSF	Granulocyte colony stimulating factor
19.GvHD	Graft versus host disease
20.HIV	Human immunodeficiency virus
21.HSCT	Hematopoietic stem cell transplantation
22.HSV	Herpes simplex virus
23.ICU	Intensive care unit
24.IDSA	Infectious Diseases Society of America
25.IFN	Interferon
26. IL	Interleukin

27. INF A Influenza A virus

28. INF B Influenza B virus

29. LRTI Lower respiratory tract infection

30. NHL Non Hodgkin lymphoma

31.NK Natural killer cells

32. PCR Polymerase chain reaction

33. PIF Parainfluenza virus

34. RD Respiratory distress

35. RSV Respiratory syncytial virus

36. RT-PCR Real-time polymerase chain reaction

37. SARS Severe acute respiratory syndrome

38. SD Standard deviation

39. TNF Tumor necrosis factor

40. VAD Vascular access device

41. VZV Varicella zoster virus

42.WBC White blood cell count

Table of contents:

1.	Acknowledgements	i
2.	Abstract	ii
3.	Abbreviations	vi
4.	Table of contents	viii
	List of tables	xi
	List of figures	xiv
5.	Introduction	1
6.	Objectives of the study	4
7.	Review of literature	5
	Acute lymphoblastic leukemia	5
	Acute myeloid leukemia	7
	Pathophysiology of Immune Suppression in patients with	
	cancer	8
	Impaired Neutrophil Function	9
	Impaired Cellular and Humoral Immunity	11
	Disruption of Skin and Mucosal Barriers	12
	Impaired Reticuloendothelial Function	14
	• Features known to be associated with a low risk for se	vere
	infection	15
	Febrile infections in children with leukemia	16
	1-Fever	16
	2-Immunosuppression induced by treatment	17
	3-Occurrence of febrile episodes	20
	4-Etiology, clinical profile and outcome	21
	Respiratory viral infections	24
	Rhinoviruses	27
	Respiratory syncytial virus	29
	Adenovirus	31
	Parainfluenza virus	33
	Influenza viruses	34

	Cytomegalovirus	39		
	Bacterial infections	41		
	Fungal infections	42		
	• Treatment and prevention of febrile episodes	44		
	Algorithm for initial management of febrile neutropenic			
	patients	46		
	Antiviral drug prophylaxis	47		
	Role of granulocyte colony stimulating factor	51		
	Differentiation of viral from bacterial infections in febrile children			
	undergoing chemotherapy for cancer	52		
	Viral Coinfection	53		
8.	Patients and methods	54		
	Patients	54		
	Inclusion criteria	54		
	Exclusion criteria	54		
	Study design	54		
	Complete history taking	55		
	Clinical examination	55		
	Investigations	56		
	i. Laboratory	56		
	ii. Radiological	57		
	iii DCD mothodalagu	50		
	iii. PCR methodology	58		

Descriptive laboratory data of the studied
patients66
PCR results for respiratory viral infection67
Respiratory viral infection in febrile and afebrile
patients67
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to demographic data68
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to clinical data70
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to radiological findings71
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to neutropenia and lymphopenia73
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to antifungal and antiviral
treatment74
Comparison between Group I (-ve viral infection) and Group II
(+ve viral infection) according to morbidity and mortality75
Seasonal distribution of respiratory viruses
detected76
Different etiologies of LRTI in studied
population78
Patients with mixed viral and bacterial infection admitted to
ICU79
Clinical outcome of studied
patients80
Patients with positive viral infection admitted to ICU had
mixed viral and bacterial infections81
 Patients with negative viral infection admitted to ICU had mixed
bacterial and fungal infections82

10. Discussion	83
11. Summary and conclusions	97
12. References	99
13. Protocol English.	
14. Protocol Arabic.	
15. Summary Arabic.	

List of tables:

Table 1 Corticosteroid-Induced Effect on Lymphocyte Function12
Table 2 Risk factors for fever and causes of fever in patients with
cancer24
Table 3 The most important respiratory viruses
Table 4 Antivirals used in immunocompromised children48
Table 5 Primers used to detect studied respiratory viruses61
Table 6World Health Organization Age-Specific Criteria for
Tachypnea63
Table 7 Descriptive demographic data of the studied patients65
Table 8 Descriptive laboratory data of the studied patients
Table 9 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to demographic data of the studied
patients69
Table 10 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to clinical data70
Table 11 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to radiological findings71
Table 12 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to neutropenia and lymphopenia73
Table 13 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to antifungal and antiviral
treatment74
Table 14 Comparison between Group I (-ve viral infection) and Group
II (+ve viral infection) according to morbidity and mortality75
Table 15 Seasonal distribution of respiratory viruses detected76
Table 16 Patients with mixed viral and bacterial infection admitted to
ICU78
Table 17 Patients with positive viral infection admitted to ICU had
mixed viral and bacterial infections81
Table 18 Patients with negative viral infection admitted to ICU had
mixed bacterial and fungal infections82

List of Figures:

(Figure 1) Algorithm for initial management of febrile neutropenic patients46
(Figure 2) PCR results for respiratory viral infection among studied
group67
(Figure 3) Respiratory viral infection in febrile and afebrile patients.68
(Figure 4) 9 years old male with CML+ Blastic crisis with viral
pneumonia presented with increased BVM and hyperinflation of the
lungs and areas of peribronchial thickening72
(Figure 5) 12 years old female with AML under chemotherapy
(Adriamycin + Ara C) positive for halo sign72
(Figure 6): Seasonal distribution of respiratory viruses detected77
(Figure 7) Different etiologies of LRTI in studied population78
(Figure 8) Clinical outcome of studied patients80

INTRODUCTION

Cancer is a major disease burden worldwide but there are marked geographical variations in incidence overall and at specific organ sites. Reliable estimation of the number of incidence requires population-based cancer registration. Worldwide, approximately 10 million people are diagnosed with cancer annually and more than 6 million die of the disease every year; currently, over 22 million people in the world are cancer patients. In 2005 cancer killed approximately 42,000 people In Egypt 31,000 of those people were under the age of 70. (W.H.O., 2007)

The risk of any child developing acute leukemia is about 1 in 2,000. (Geaves, 2002)

Leukemia was a fatal illness until the early 1970s when effective chemotherapy and irradiation were introduced. Since then, the outcome of children with leukemia has improved steadily. Overall survival has increased from 25% to 75% with more intensive therapy and treatment adjusted to specific risk groups. (Ramanujachar et al., 2006)

Today, an important goal in improving the outcome of children with leukemia is associated with treatment-related factors. Intensified antileukemia treatment increases susceptibility to infections. Despite effective antimicrobial treatment of infections, they still are the leading cause of treatment-related morbidity and mortality. (Slats et al., 2005)

The occurrence of febrile episodes during anticancer treatment varies from 2.6 to 4.2 episodes per patient years at risk. The

microbiologic cause of infection or the focus of infection in children with cancer is found in 30% to 40% of the cases. (Katsimpardi et al., 2006)

The incidence of bacteremia varies from 8.5% to 28% in febrile episodes, Depending on the intensity of antileukemia therapy. (Stabell et al., 2007)

Mortality due to invasive infections is low, usually less than 10% but varying from 3% to 17%, depending on the immunologic status of the leukemic patient and on the microbiologic causal agent. (Slats et al., 2005)

Most septicemias occur in association with neutropenia and are caused by gram-positive bacteria. A considerable number of febrile episodes have remained classified as fever of unknown origin (FUO). Respiratory viruses are the most common cause of infections in children, and they are naturally a potential cause of febrile episodes in children with cancer. Respiratory viral infections in children with cancer have not been as common as would have been expected. (Rahiala et al., 1998)

Respiratory syncytial virus (RSV) and parainfluenza viruses have been the most common causative viruses. The most common respiratory virus, rhinovirus, has been searched for only in a few studies. (Christensen et al., 2005)

The role of these viruses in immunocompromised children is not yet clear. Prompt and reliable etiologic diagnosis of fever is crucial. It determines the patient's treatment and gives information on the clinical course and outcome of the illness. Unnecessary treatments should be avoided. In addition, economic losses, discomfort to the