Role of multidetector computed tomography angiography in evaluation of anatomical variations in the coronary arteries

Thesis

Submitted for Partial Fulfillment of master degree in Radiodiagnosis

 $\mathbf{B}\mathbf{y}$

Nahla Deyaa El Deen Mostafa

M.B.B.Ch (Faculty of Medicine- Cairo University)

Supervised by

Prof. Dr. Magdy Ibrahim Bassiouny

Professor of Radiology
Cairo University

Dr. Mohamed Ali Salem, MD

Lecturer of Radiology
Cairo University

Faculty of Medicine
Cairo University
2015

Abstract

Although the majority of these anomalies were detected incidentally

during coronary CT angiography, awareness of them is clinically

important for the appropriate management of cardiac patients.

Multidetector CT with rapid coverage, thin collimation, faster gantry

rotation, overlapping reconstructions with ECG gating and advanced

postprocessing techniques enables perfect noninvasive delineation of

complex coronary artery anatomy, variations and congenital anomalies of

coronary arteries. That's why CCTA has gained much a wider application

area in the field of cardiovascular imaging after improvement of the

radiation dose and is now the primary imaging modality for the evaluation

and diagnosis of CAAs...

The objective of this study was to assess the prevalence of the different

types of coronary artery anatomical variants and primary congenital

anomalies using the multislice CT coronary angiography as a non invasive

imaging tool.

We studied 1000 patients referred to us to detect or exclude coronary

artery disease by using multislice computed tomography evaluation of the

coronary arteries.

Our study showed that the incidence of these variations and anomalies

in our population is close to that reported in other populations and that

coronary artery anatomical variations are almost benign entities with no

haemodynamic significance, while some congenital anomalies may

interfere with adequate myocardial blood supply causing variable

ischemic symptoms.

Keywords: CCTA-CT-ECG-CAAS- ALCAPA

ACKNOLEGEMENTS

Praise be to Allah, the creator and sustainer of the world. It is but with His help that this piece of work could come to life.

Foremost; I would like to express my deepest gratitude to **Prof. Dr. Magdy Ibrahim Bassiouny**, professor of radiology, faculty of medicine, Cairo University; for choosing this interesting topic and for his guidance, encouragement and continuous support that were of great value throughout the work.

My deepest appreciation to **Dr. Mohammed Ali Salem**, lecturer of Radiodiagnosis, Cairo University, for his encouragement, support, guidance, kind advice and help throughout supervising this work.

I am extremely grateful to **Dr. Maha Mohamed El Taher** for her endless support, encouragement, continuous help and kind advice throughout the work.

I have to thank **Prof. Dr. Amr Osama**, professor of Radiodiagnosis, the technologists and nurse staff in Alfa scan radiology centre and the department of radiology in Kasr Al Aini educational hospital, for their cooperation, dedication and the help they showed throughout the work.

I am also thankful to **Prof. Dr. Mohamed Mohamed Eltoukhy**, former head, and **Prof. Dr. Ashraf Salah Selim**, current head of the radiology department, faculty of medicine, Cairo University.

And last, but definitely not least, I deeply thank my **family f**or their endless support, care and encouragement to complete this work.

CONTENTS

List of Figures	1
List of Tables	XII
List of Abbreviations	XIII
Introduction	1
Aim of the work	2
Review of literature	
I] Anatomy of the coronary arteries	
 Gross anatomy of the coronary arteries 	3
 LV segmental anatomy 	8
 Coronary artery territories 	12
 Angiographic anatomy 	13
 CT anatomy of coronary arteries 	21
• The coronary venous system	24
II] Anatomical variations and anomalies	28
 Anomalies of origination and course 	29
 Anomalies of intrinsic coronary arterial anatomy 	35
 Anomalies of coronary termination 	38
III] Multislice CT (physical& technical principles)	
• Evolution of computed tomography	41
 Multislice CT; technical principles 	45

IV] Multislice CT coronary angiography	53
• Requirements for CTCA	54
 Radiation dose 	70
 Technique of CT coronary angiography 	73
• Pitfalls, artifacts and limitations of CTCA	84
Patients and methods	91
Results	102
Case presentation	115
Discussion	150
Summary and conclusion	158
References	160
Arabic summary	168

List of Figures

Fig. number		Page
	Review of literature	
Fig.1	Axial MIP image showing left coronary (LC), right	3
	coronary (RC) and posterior non-coronary (NC) cusp	
Fig.2	An overview of the coronary arteries in the anterior	6
	projection showing Left Main or left coronary artery	
	(LCA) and Right coronary artery with their branches.	
Fig.3	An overview of the coronary arteries in the right	7
	anterior oblique projection showing Left Main or left	
	coronary artery (LCA) and Right coronary artery with	
	their branches.	
Fig.4	An overview of the coronary arteries in the lateral	7
	projection showing Left Main or left coronary artery	
	(LCA) and Right coronary artery with their branches.	
Fig.5	(A) VR image of right dominance (B) VR image of left	8
	dominance	
Fig.6	LV segmentation in horizontal and long vertical and	9
	horizontal axes	
Fig.7	LV segmentation in short axis	10
Fig.8	LV territorial supply, (A) in short axis at base, mid body	12
	and apex, (B) in horizontal and vertical long axis	
Fig.9	Planes of epicardial tree	13
Fig.10	CCA of RCA in LAO cranial projection	16
Fig.11	CCA of RCA in left lateral projection	16

Fig.12	CCA of RCA in AP cranial projection	16
Fig.13	CCA of LCX in RAO projection	20
Fig.14	CCA of LAD in LAO cranial projection	20
Fig.15	CCA of LMT in LAO caudal (spider) projection	20
Fig.16	Normal origin of coronary arteries in axial CT cuts	21
Fig.17	Axial CT showing normal anatomy of the coronary	22
	arteries	
Fig.18	CT angiography curved reformatted MIP images	23
	showing normal anatomy of the coronary arteries	
Fig.19	CT angiography VR images before and after subtraction	24
	of the heart showing normal coronary anatomy	
Fig.20	VR images showing the coronary veins	26
Fig.21	Interarterial LCA	31
	Axial MIP and VR images of a patient with an	
	anomalous origin of the LCA from the right sinus of	
	Valsalva and coursing between the aorta and pulmonary	
	artery	
Fig.22	• The illustration in the left upper corner is the	31
	most common and clinically significant anomaly.	
	• There is an anomalous origin of the LCA from	
	the right sinus of Valsalva and the LCA courses	
	between the aorta and pulmonary artery.	
	This interarterial course can lead to compression	
	of the LCA (yellow arrows) resulting in	
	of the LCA (yellow arrows) resulting in myocardial ischemia.	

	The other anomalies in the figure on the left are not	
	hemodynamically significant	
Fig.23	Axial and VR images of ALCAPA	33
Fig.24	Axial MIP and VR images of Myocardial bridging	36
Fig.25	Axial and VR images of Fistula	39
Fig.26	Single slice, single helix, Multislice and four interleaved	43
	helices CT	
Fig.27	Single vs Multidetector CT geometry	44
Fig.28	Dual source CT tube opened and closed	44
Fig.29	Detector array designs for multiple-row detector CT	46
	scanners that can yield 64 sections per gantry rotation	
Fig.30	Flexible use of detectors in 4-slice MSCT scanners.	47
Fig.31	Drawings show that relation of table movement with	49
	respect to gantry rotation is described by beam pitch.	
Fig.32	Graphs demonstrate the necessity for scanning at low	50
	pitch values during helical cardiac CT data acquisition.	
Fig.33	Drawings show variable temporal resolution across	51
	image.	
Fig.34	Diagram shows the range of diastolic regions for	56
	varying heart rates.	
Fig.35	Prospective ECG-triggering with X-ray beam on during	59
	a portion of cardiac cycle, while in the remaining	
	cardiac phase, the X-ray beam is turned off	
Fig.36	Conventional retrospective ECG-gated coronary CT	59
	angiography. X-ray beam is turned on during the entire	
	cardiac cycle	

coronary CT angiography shows presence of misalignment, affecting visualization of the right coronary artery Fig.38 Drawings show two types of retrospective reconstruction algorithms. Fig.39 Differences between partial scan reconstruction versus multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.37	CPR MIP CT image of prospective ECG-triggered	60
Fig.38 Drawings show two types of retrospective reconstruction algorithms. Fig.39 Differences between partial scan reconstruction versus multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		coronary CT angiography shows presence of	
Fig.38 Drawings show two types of retrospective reconstruction algorithms. Fig.39 Differences between partial scan reconstruction versus multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		misalignment, affecting visualization of the right	
reconstruction algorithms. Fig.39 Differences between partial scan reconstruction versus multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		coronary artery	
Fig.49 Differences between partial scan reconstruction versus multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.38	Drawings show two types of retrospective	62
multiple-segment reconstruction. Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		reconstruction algorithms.	
Fig.40 Coronary CTA images acquired with the most recent CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.39	Differences between partial scan reconstruction versus	62
CT hardware. (A) A 320-slice CT, (B) high-pitch spiral acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		multiple-segment reconstruction.	
acquisition with dual-source CT Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.40	Coronary CTA images acquired with the most recent	65
Fig.41 Six representative transverse sections were reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		CT hardware. (A) A 320-slice CT, (B) high-pitch spiral	
reconstructed, at the same z-axis position at the level of the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		acquisition with dual-source CT	
the aortic valve at different cardiac phases. Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.41	Six representative transverse sections were	67
Fig.42 Reconstructions of the data set with (A, B) a routine algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		reconstructed, at the same z-axis position at the level of	
algorithm and (C, D) a more edge-enhancing algorithm. Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		the aortic valve at different cardiac phases.	
Fig.43 Coronary CT angiography performed without saline chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.42	Reconstructions of the data set with (A, B) a routine	69
chasing technique showing streak artifact. Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		algorithm and (C, D) a more edge-enhancing algorithm.	
Fig.44 Coronary CT angiograms obtained at the level of the right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.43	Coronary CT angiography performed without saline	78
right atrium showing difference between monophasic, biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		chasing technique showing streak artifact.	
biphasic and triphasic injections Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced	Fig.44	Coronary CT angiograms obtained at the level of the	78
Fig.45 64 MDCT angiography reveals moderate stenosis (arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		right atrium showing difference between monophasic,	
(arrow) of the proximal LAD due to a mixed, partially non-calcified plaque seen with different advanced		biphasic and triphasic injections	
non-calcified plaque seen with different advanced	Fig.45	64 MDCT angiography reveals moderate stenosis	83
		(arrow) of the proximal LAD due to a mixed, partially	
vigualization to shaigues		non-calcified plaque seen with different advanced	
visualization techniques.		visualization techniques.	

Fig.46	CCA and CCTA showing pulsation artifacts.	86
Fig.47	CCTA showing stepladder artifacts due to cardiac	86
	motion.	
Fig.48	CCTA showing artifacts due to increased heart rate	87
	(arrows).	
Fig.49	Stepladder artifact due to respiratory motion. Sagittal	87
	MIP image shows a severe respiration related artifact in	
	the anterior chest wall (arrows)	
Fig.50	(A) MPR image, (B) Axial image showing beam	88
	hardening artifact.	
Fig.51	Beam Hardening artifact owing to heavy calcifications.	88
Fig.52	VR images obtained with different window width and	90
	level settings show the LAD artery and a diagonal	
	branch.	
Fig.53	Difficulties due to overlapping contrast-filled vascular	90
	structures	
	Patients and methods	
Fig.54	Segmental anatomy of right coronary artery (RCA)	98
	(lateral view), and left coronary artery (right anterior	
	oblique view) with left main trunk (LMT), left anterior	
	descending (LAD), and left circumflex (LCX) according	
	to American Heart Association (AHA)	
	Results	
Fig.55	Pie chart displaying the gender of patients	102
Fig.56	Pie chart displaying coronary dominance	103
Fig.57	Pie chart displaying the LAD type	104

Fig.58	Bar chart displaying the number of diagonal branches	105
Fig.59	Bar chart displaying the number of OM branches	106
Fig.60	Pie chart displaying prevalence of ramus branches and	107
	their number	
Fig.61	Pie chart displaying the prevalence of HL branches and	108
	their number	
Fig.62	Pie chart displaying the origin of conus branch	109
Fig.63	Pie chart displaying the origin of SA nodal branch	110
Fig.64	Pie chart showing the incidence of the different	111
	congenital anomalies	
	Case presentation	
Fig.65	Single coronary artery	116-
Case 1	A: CPR MIP image showing the LMT>>>LAD	117
	B: CPR MIP image showing LMT>>>LCX>>>OM1	
	C: CPR MIP image showing continuation of the LCX in	
	the Rt AV groove	
	D: VR image showing LMT branching into LAD	
	(giving diagonals), Ramus intermedius and LCX (which	
	gives a long PL branch)	
	E: VR image showing the continuation of LCX in the	
	Rt AV groove	
Fig.66	Ectopic origin of LMT from NCS	118-
Case 2	A: CPR MIP image showing LMT>>> LCX>>OM	119
	B: CPR MIP image of the LMT>>>LAD	
	C: CPR MIP image of the RCA>>>PDA	

	D: axial MIP image showing the origin of the LMT	
	from the non coronary sinus	
	E: VR image showing the LMT originating from the	
	posterior non coronary sinus and branching into LAD	
	and LCX branches	
	F: VR image of the heart showing the RCA, LAD and LCX	
Fig.67	Single coronary artery	120-
Case 3	A: VR image showing LMT arising from proximal	121-
	RCA	122
	B: CPR MIP image of RCA>>>LAD	
	C: CPR MIP image of RCA>>>LAD>>>D	
	D: CPR image of RCA>>>PL	
	E: CPR image of RCA>>>LMT>>>LCX>>>OM	
	F, G, H: axial MIP images showing origin of LCA from	
	proximal RCA	
Fig.68	Ectopic origin of RCA from LCS	123-
Case 4	A: VR image showing the origin of RCA from LS,	124
	anterior to the LMT, and runs in an interarterial course	
	B: CPR MIP image of LMT>>>LAD	
	C: CPR MIP image of LMT>>>LAD>>>D	
	D: CPR MIP image of RCA>>>PDA	
	E: VR image showing RCA originating from LS and	
	running interarterially to continue normally in the right	
	AV groove	
Fig.69	Ectopic origin of LMT from RCS	126
Case 5		

	B: CPR MIP image of the RCA>>>PDA	
	C: VR image showing RCA>>>PL	
	D: VR image showing LMT arising from RS and runs	
	prepulmonic then divides into LAD and LCX	
Fig.70	Coronary fistula	128-
Case 6	A, B and C: CPR MIP images showing fistulous	129
	communication between the RCA and the Rt atrium	
	D and E : Coronal oblique MIP images for the fistula	
	F : sagittal oblique image for the fistulous	
	communication between the RCA and the Rt atrium	
Fig.71	ALCAPA	130-
Case 7	A , B , C and D : sagittal oblique MIP images showing	131
	anomalous origin of the left coronary artwry from the	
	pulmonary artery ALCAPA	
	E: CPR MIP image showing LAD continuation of the	
	LMT which is originating anomalously from the	
	pulmonary artery	
	F: CPR MIP image of LMT>>>LCX	
Fig. 72	High take off of RCA	132-
Case 8	A: VR image showing origin of LMT from LS and its	133
	bifurcation into LAD and LCX	
	B: CPR MIP image of LMT>>>LAD	
	C: CPR MIP image of LMT>>>LCX	
	D: CPR MIP image of RCA>>>PDA	
	E: VR image showing RCA originating from above RS	
	and running in the Rt AV groove	

A: VR image showing LMT arising from LS and dividing into LAD and LCX B: CPR MIP image of LMT>>>LAD C: CPR MIP image of LMT>>>LCX D: CPR MIP image of RCA E: VR image showing RCA arising from tubular aorta and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS B: VR image showing origin directly from LS C: CPR MIP image of LAD arising directly from LS C: CPR MIP image of LAD arising directly from LS C: CPR MIP image of LAD arising directly from LS	Fig.73	High take off of RCA	134-
B: CPR MIP image of LMT>>>LAD C: CPR MIP image of LMT>>>LCX D: CPR MIP image of RCA E: VR image showing RCA arising from tubular aorta and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS	Case 9	A: VR image showing LMT arising from LS and	135
C: CPR MIP image of LMT>>>LCX D: CPR MIP image of RCA E: VR image showing RCA arising from tubular aorta and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		dividing into LAD and LCX	
D: CPR MIP image of RCA E: VR image showing RCA arising from tubular aorta and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		B : CPR MIP image of LMT>>>LAD	
E: VR image showing RCA arising from tubular aorta and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS C: CPR MIP image of LAD arising directly from LS		C: CPR MIP image of LMT>>>LCX	
and running interarterially between pulmonary artery and ascending aorta Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		D : CPR MIP image of RCA	
Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		E: VR image showing RCA arising from tubular aorta	
Fig.74 Case 10 Separate ostia for LAD and LCX A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		and running interarterially between pulmonary artery	
A: CPR image showing LCX arising directly from LS B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		and ascending aorta	
B: CPR MIP image showing separate ostia fro LAD and LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 Separate ostia for LAD and LCX A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS	_	Separate ostia for LAD and LCX	136-
LCX from LS C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS	Case 10	A: CPR image showing LCX arising directly from LS	137
C: CPR MIP image showing LAD arising directly from LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		B: CPR MIP image showing separate ostia fro LAD and	
LS D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		LCX from LS	
D: VR image showing separate origins of LAD and LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		C: CPR MIP image showing LAD arising directly from	
LCX from LS Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		LS	
Fig.75 Case 11 A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		D: VR image showing separate origins of LAD and	
A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		LCX from LS	
A: VR image showing separate ostia for the LCX and LAD from LS B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS		Separate ostia for LAD and LCX	139
B: VR image showing origin of RCA from RS C: CPR MIP image of LAD arising directly from LS	Case 11	A: VR image showing separate ostia for the LCX and	
C: CPR MIP image of LAD arising directly from LS		LAD from LS	
		B: VR image showing origin of RCA from RS	
D CDD MD: CLCV :: 1: 1 C AC		C: CPR MIP image of LAD arising directly from LS	
D: CPR MIP image of LCX arising directly from LS		D: CPR MIP image of LCX arising directly from LS	
Fig.76 Co-dminance	_	Co-dminance	140-
Case 12 A: CPR MIP image of LMT>>>LAD	Case 12	A: CPR MIP image of LMT>>>LAD	141
B: CPR MIP image of LMT>>>LCX>>>PDA		B: CPR MIP image of LMT>>>LCX>>>PDA	

	C: CPR MIP image of RCA>>>PDA	
	D: VR image showing origin of LMT from LS and	
	dividing into LAD and LCX which gives a PDA branch	
	E: VR image showing RCA arising from RS and giving	
	a PDA branch	
Fig.77	Single coronary artery	143-
Case 13	A , B , C : axial MIP images showing the anomalous	144
	single coronary artery arising from tubular aorta and	
	dividing into two branches	
	D: CPR image of LMT>>>LAD	
	E: CPR image of LMT>>>LCX>>>PL	
	F: CPR image of RCA>>>PL	
	G: CPR image of RCA>>>PDA	
	H: VR image showing anomalous single coronary artery	
	arising from tubular aorta and dividing into RCA and	
	LMT	
Fig.78	Single coronary artery	145-
Case 14	A, B, C axial MIP images showing LMT dividing into	146
	LCX and LAD which gives origin to RCA that runs in a	
	prepulmonic course	
	D: CPR MIP image of LMT>>>LAD>>>RCA	
	E: CPR MIP image of LMT>>>LAD	
	F,G: VR images showing the origin of RCA from LAD	
	and runs in a prepulmonic course	
Fig.79	Ectopic origin of RCA from LCS	147-
Case 15	A , B , C and D axial MIP images showing RCA arising	148-