

Synthesis, characterization and application Of Modified cellulose from lignocellulosic Waste For waste water treatment

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Master Degree in Science (M. Sc).

by

Alaauddin Mohamed Ezzat El-Anwar Ahmed **B.Sc.** (Chemistry)

Supervised by

Prof.Dr. Ali Hashem MohamedProfessor of Applied Organic Chemistry
Textile Research Division,

National Research Centre

Dr.Ahmed Abd-Elsalam KhalilAssistant Professor of Organic Chemistry
Faculty of Science, Benha University

Dr. Hesham Hafez Sokker

Assistant Professor of Applied Organic Chemistry, National Centre for Radiation Research and Technology, Nasr City

2009

المحالية الم

المالية المرابعة المر

المنظمة المنظم

التوبه - الآيه (١٠٥)

Approval Sheet

A Thesis entitled

"Synthesis, characterization and application Of Modified cellulose from lignocellulosic Waste For waste water treatment"

by

Al aauddin Mohamed Ezzat El-Anwar Ahmed

B.Sc.(Chemistry)

For the Partial Fulfillment of the Requirements for the Master Degree in Science (M.S.c.)

To Faculty of Science, Chemistry Department, Benha University

Annoval

Supervisors

,	//
1. Prof. Dr. Ali Hashem Professor of Applied Organic Chemistry and Chemical	••••••
Technology, Textile Research Division, National Research	
Centre, Dokki, Cairo	
2. Dr. Ahmed Abd-Elsalam Khalil Assistant Professor of Organic Chemistry, Faculty of Science,	
Benha University	
3. Dr. Hesham Hafez Sokker	•••••
Assistant Professor of Applied Organic Chemistry,	
National Centre for Radiation Research and Technology,	
Nasr City	

Approval Sheet

A Thesis entitled

"Synthesis, characterization and application Of Modified cellulose from lignocellulosic Waste For waste water treatment"

by

Al aauddin Mohamed Ezzat El-Anwar Ahmed

B.Sc.(Chemistry)

For the Partial Fulfillment of the Requirements for the Master Degree in Science (M.S.c.)

To Faculty of Science, Chemistry Department, Benha University

Approx	Arbitrators
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	

ACKNOWLEDGEMENT

I am very grateful to my advisor **Dr.Ahmed Abd Essalam Khalil**,
Assistant professor of Organic Chemistry, Chemistry Department, Faculty of Science, Benha University for guiding me throughout this study.

I am also deeply indebted to **Dr. Hesham Hafez Sokker**, Assistant Professor of Applied Organic Chemistry, National Centre for Radiation Research and Technology for his unstinted support throughout this work.

I also express my sincere gratitude to **Prof. Dr. Ali Hashem,** Professor of Applied Chemistry and Chemical Technology, National Research Centre, for suggesting the topic of this thesis, science guidance and continuous supervision that made this work possible.

Publication from the present work

Part of the present work has been subsequently published and is listed below as follows:

-"Preparation, Characterization and Util ization of Amidoximated Poly (MAA/AN)-Grafted Al hagi Residues for the Removal of Zn (II) from Aqueous Solution"

A.A.Khalil, H.H.Sokker, A.Al-Anwar, A.Abd ElZahar and A.Hashem Adsorption science & technology, JApAn (Accepted 2009)

To My FaMily For Sincere Help

Summary

Summary

The original work presented in this thesis was undertaken with the primary objective of synthesizing new polymeric materials based essentially on Alhagi residues to be used as adsorbent materials.

To achieve the goal, Alhagi residues was subjected to grafting reaction using MAA/AN monomer in presence of dimethyl sulfoxide as solvent and γ -irradiation as initiator.

The so-obtained grafted Alhagi residues was treated with hydroxyl amine hydrochloride in alkaline medium to obtain amidoximated poly (MAA/AN)-grafted Alhagi residues.

In short, the work comprises the following investigations

- 1. Estimation of cellulose content in Alhagi residues.
- 2. Studying all factors affecting grafting of MAA/AN on Alhagi residues.

These factors include:

- -radiation dose
- -monomer compositions and concentration
- 3. Characterization of the grafted samples using:
 - FT-IR spectroscopy
 - -SEM
 - -Estimation of nitrogen content
 - -Estimation of carboxyl content.
- 4. Treatment of grafted Alhagi residues with hydroxyl amine in alkaline medium to obtain amidoximated poly (MAA/AN) –grafted Alhagi residues.

- 5. Characterization of amidoximated poly (MAA/AN) grafted Alhagi residues using:
 - -FT-IR spectroscopy
 - -SEM
 - -Estimation of percent solubility in distilled water
 - -Estimation of nitrogen content
 - -Estimation of carboxyl content
- 6. Utilization of the so-obtained amidoximated poly (MAA/AN) –grafted Alhagi residues for the removal of Zn (II) from aqueous solution.

Results of these investigations led to the following:

- -Alhagi residues contain 5% ash, 25% lignin, 37.1 alpha cellulose and 25% hemi-cellulose and 5.9 % extractive material.
- The FT-IR spectra of grafted Alhagi residues shows the appearance of a new absorption peak (sharp peak) at 2244.25 cm⁻¹, which is attributed to the cyanide (CN) groups.
- The FT-IR spectra of amidoximated poly (MAA/AN)-grafted Alhagi residues shows disappearance of the cyanide peak and appearance of new absorption peak at 1655.73 cm⁻¹ corresponding to the stretching vibration of the C=N bond which indicate the conversion of the original cyanide groups to amidoxime groups.
- -The graft yield % increase by increasing radiation dose from 5 to 10 kGy and then remained constant at higher radiation doses (15-20 kGy).
- The graft yield % increase by increasing the comonomer composition up to 60/40 (MAA/AN) and then decreases.
- The appropriate condition for grafting of MAA/AN Alhagi residues could be achieved using radiation dose of 10kGy and MAA/AN ratio of 60-40.

The adsorption data indicate that the amidoximated samples were effectively used in adsorption of Zn (II) rather than Hg (II) and Pb (II) from aqueous solutions.

-The adsorption capacity of Zn (II) onto amidoximated poly (MAA/AN) – grafted Alhagi residues were 212.76 and 344.8 mg/g at 30 and 50° C, respectively.

-The adsorption data obeyed both Langmuir and Freundlich isotherms and followed second order kinetics.

CONTENTS

Subjec	t <u>COTTENTS</u>	Page No.
Contents		I
Appendix		Iii
Summery		V
СНАРТЕ	R I (Introduction)	
1. Introdu	·	1
	ance of Alhagi maurorum	
	cal structure of lignocellulose	2 3 3
	nin	3
_	micelluloses	4
3. 3. Ext	tractives	5
3. 4. Cel	llulose	5
3. 4.1. C	hemical Modification of Cellulose	6
3.4.1.1.	Esterification of cellulose	6
	Organic Esters	6
	a. Cellulose acetate	6
	Inorganic esters	7
	Cellulose phosphate	7
3. 4. 1. 2.	Etherification of cellulose	7
	a. Carboxymethyl cellulose	8
	b. Hydroxy ethyl cellulose	8
	c. Hydroxy propyl cellulose	9
	d. Methyl cellulose	9
	e. Cyanoethyl cellulose	9
	f. Carbamoylethyl cellulose	9
3. 4. 1. 3.	Cellulose graft copolymer	10
	Methods of grafting	10
	Physical methods	10
	Chemical methods	10
	Characterization of grafted cellulose	16
	Confirmation of grafting	16
3. 4. 1. 4.	Oxidized and Hydrolyzed celluloses	16
3. 4. 1. 4. 1	. Oxidised cellulose	16
3. 4. 1. 4. 2	. Hydrolyzed cellulose	16
4. Utiliza	tion of agricultural wastes in water treatment	17
4.1. Agri	cultural waste materials for heavy metal removal	17
	cultural waste materials for dye removal	20
	Present Work	23

CHAPTER II(Experimental)

1. Experimental	24
1.1. Materials	24
1.2. Methods	24
1. 2. 1. Preparation of dissolving pulp	24
1. 2. 2. Bleaching of pulp	25
1. 2. 3. Grafting procedure	25
1.2.4. Preparation of amidoximated Alhagi residues	26
1. 2. 5. Adsorption studies	26
1. 3. Analysis	27
1. 3. 1. Determination of Nitrogen content	27
1. 3. 2. Determination of carboxyl content	27
1. 3. 3. Determination of solubility% of amidoximated poly	28
(MAA/AN)- grafted Alhagi residues	20
1. 3. 4. FT-IR spectroscopy	28
1. 3. 5. Scanning electron microscopy (SEM)	29
CHAPTER III (Results and Discussion)	
3. Results and Discussion	30
3.1. FT-IR spectroscopy	30
3.2. Surface morphology	32
3.3 Factors affecting grafting reaction	33
3.3.1 Effect of irradiation dose	33
3.3.2 Effect of comonomer concentration and composition	34
3.4. Factors affecting the adsorption of Zn(II) ions onto amidoximated	35
Alhagi residues	33
3.4.1. Effect of cation type	35
3.4.2. Effect of pH	36
3.4.3. Effect of adsorbent dose	37
3.5. Effect of adsorbate solution	37
3.5.1. Adsorption isotherms	37
3.6. Effect of contact time	44
3.6.1. Adsorption Kinetics	44
3.6.2. Mechanism of removal	49
3.7. Thermodynamic Parameters	49
4. Conclusions	52
References	53
Arabic summery	

Appendix

Symbol	Signification
AR	Alhagi Residues
AN	Acrylonitrile monomer
MAA	Methacrylic Acid
GAR	Grafted Alhagi Residues
AAR	Amidoximated Alhagi Residues
Co	Initial concentration of adsorbate in solution (mg/l)
C _e	Equilibrium liquid phase concentration (mg/l)
$q_{\rm e}$	Amount of adsorbed metal at equilibrium (metal uptake), mg
	of metal per gram of adsorbent
q_{t}	Amount of adsorbed metal at time t (mg/g)
W	Weight of adsorbent (g)
\mathbf{W}_{o}	Weight of Alhagi residues before grafting,
\mathbf{W}_{g}	Weight of Alhagi residues after grafting,
V	Volume of metal ion (l)
Т	Time (min)
\mathbf{k}_1	Rate constant of pseudo first-order of adsorption (min ⁻¹)
\mathbf{k}_2	Rate constant of pseudo second-order of adsorption
	(g/mg.min)
k _p	Intra-particle diffusion rate constant (mg/g. min)
С	Constant that gives idea about the thickness of boundary layer
k_{L}	Langmuir constant (l/g)
a_{L}	Langmuir isotherm constant (l/mg)
b	Energy of adsorption (l/mg)
Q _{max}	Maximum adsorption capacity (mg/g)
$R_{\rm L}$	Dimensionless constant separation factor parameter
K _F	Constant of Freundlich indicates the adsorption capacity

1/n	Arbitrary constant related to the adsorption intensity and
	favorability of adsorption
\mathbb{R}^2	Regression correlation coefficient
R	Universal gas constant (8.31441 J/mol K)
Т	Absolute temperature (K)
ΔG°	Standard free energy of adsorption (kJ/mol)
ΔH°	Standard enthalpy of adsorption (kJ/mol)
ΔS°	Standard entropy of adsorption (kJ/mol K)