

Ain Shams University Faculty of Science

Implementation of Parallel Digital Signal Processing Circuits using Field Programmable Gate Array

A thesis submitted for the degree of Master of Science As a partial fulfillment of the requirements of the of Master of Science

Salwa Mohamed Abdel Mohsen Mohamed Yousef

B.Sc. Physics (Electronics), 2009 Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Ashraf Shamseldin Yahia Prof. Dr. Amr Khairat Radi

Professor of Electronics Physics Department Faculty of Science Ain Shams University Professor of Computational Physics Physics Department Faculty of Science Ain Shams University

APPROVAL SHEET

Name: Salwa Mohamed Abdel Mohsen Mohamed Yousef

Title: Implementation of Parallel Digital Signal Processing Circuits using Field Programmable Gate Array

Supervisors

Prof. Dr. Ashraf Shamseldin Yahia

Physics Department Faculty of Science Ain Shams University

Prof. Dr. Amr Radi

Physics Department Faculty of Science Ain Shams University

Name: Salwa Mohamed Abdel Mohsen Mohamed

Yousef

Degree: M.Sc.

Department: Physics – Electronics Group

Faculty: Science

University: Ain Shams University

Graduation Date: 2009

Registration Date: 2013

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Dr. Ashraf Shamseldin Yahia, head of electronics Group, Physics Department, Faculty of Science, Ain Shams University, for introducing me to the topic and his useful comments, remarks and engagement throughout the learning process of this master thesis. Also, his careful reading of the manuscript is greatly acknowledged.

Furthermore I would like to thank Prof. Dr. Amr Radi Professor of Computational Physics, Physics Department, Faculty of Science, Ain Shams University, for giving me the opportunity to share the experimental group at CERN to achieve the tasks needed for this thesis.

Also, I would like to thank all my friends for the continuous support and assistance.

Finally, I owe more than thanks to my family for their endless support and encouragement throughout my life.

Abstract

The Compact Muon Solenoid (CMS) is one of the particle detectors based at CERN (The European Organization for Nuclear Research) designed to see a wide range of particles and phenomena produced in high-energy collisions at the Large Hadron Collider (LHC). It consists of many layers of detectors measure the different particles.

The CMS Muon system (lies at the end cap of the detector) has three types of gaseous detection technologies: Drift Tube Chambers (DTs), cathode strip chambers (CSCs), Resistive Plate Chambers (RPCs) and the new upgrade Gas Electron Multiplier (GEM).

This thesis is concerned with the digital readout electronics of the GEM detector where a specific algorithm has been designed and implemented using Field Programmable Gate Array (FPGA) device for processing (partitioning, zero suppression and multiplexing) signals generated from the GEM electronic board. Such a processed signal is then analyzed by feeding it as an input to a data acquisition system (DAQ).

Contents

		Page
Ackno	owledgments	I
Abstr	act	II
List of	f Figures	III
List of	f Tables	V
List of	f abbreviations	VI
Chapt	er 1: Introduction	
1.1	Introduction	1
1.2	Thesis Objective	2
1.3	Thesis structure	2
Chapt	er 2: Field Programmable Gate Arrays	
2.1	Introduction	4
2.1.1	Why do we need FPGAs?	7
2.1.2	Evaluation of FPGA	8
2.2	FPGA Structural Classification	12
2.2.1	2.2.1 Symmetrical arrays	12
2.2.2	Row based architecture	12
2.2.3	Hierarchical PLDs	13
2.3	FPGA Classification on user programmable switch	14
	technologies	
2.3.1	SRAM Based	15
2.3.2	Antifuse Based	17
2.3.3	EEPROM Based	18
2.4	Logic Block and Routing Techniques	18
2.4.1	Xilinx Logic block	20
2.4.2	Altera Logic Block	22

FPGA Design Flow	25
System Design	25
I/O integration with rest of the system	25
Design Description	26
Synthesis	26
Design Verification	26
Hardware design and development	26
3: Gas Electron Multiplier readout system	
Gas Electron Multiplier	30
Electronics System overview of the GEM	32
detector	
The VFAT2 and VFAT3 front-end ASIC Opto-Hybrid	35
Board	
The analog front-end	38
Variable latency data path	40
Data formats	41
Data type: lossless	41
Data type: SPZS	42
Fixed latency trigger path	43
Slow control	44
The GEM electronic board	46
The opto-hybrid and optical links	48
The gigabit transceiver and the versatile link	49
Trigger path to the CSC	51
The back-end electronics	52
	System Design I/O integration with rest of the system Design Description Synthesis Design Verification Hardware design and development 3: Gas Electron Multiplier readout system Gas Electron Multiplier Electronics System overview of the GEM detector The VFAT2 and VFAT3 front-end ASIC Opto-Hybrid Board The analog front-end Variable latency data path Data formats Data type: lossless Data type: SPZS Fixed latency trigger path Slow control The GEM electronic board The opto-hybrid and optical links The gigabit transceiver and the versatile link Trigger path to the CSC

Chapter 4: Design and Experimental Realization

4.1	Introduction	54
4.2	Data processing chip design	56
4.2.1	Sequential Partition Zero Suppression (SPZS)	57
	Component	
4.2.2	Multiplexing component	58
4.3	Spartan-6 Board	59
4.4	Verification and Results	61
4.5	Modulator schematic and FPGA path planning	64
	Chapter 5: Conclusion	
Appen	ndix A	68
Appen	ndix B	79
Appen	ndix C	87
Refere	ences	91

List of Figures

Fig.2.1 Internal Structure of FPGA	5
Fig.2.2 Simplified Internal Structure of FPGA	6
Fig.2.3 Simplified Structure of PLA and PAL	9
Fig.2.4 Internal structure of a CPLD	10
Fig.2.5 Row based Architecture	13
Fig.2.6 Hierarchical PLD	14
Fig.2.7 FPGA Classification on user programmable technology	15
Fig.2.8 SRAM-controlled Programmable Switches	16
Fig.2.9 Actel Antifuse Structure	18
Fig .2.10 Transistor pair tiles in eress-point FPGA	19
Fig.2.11 Plessey Logic Block	19
Fig.2.12 Actel Logic Block	20
Fig.2.13 Xilinx - LUT based	21
Fig.2.14 Architecture of Altera FLEX 8000 FPGAs	23
Fig.2.15 Altera FLEX 8000 Logic Element (LE)	
	24
Fig.2.16 Altera FLEX 8000 Logic Array Block (LAB)	25
Fig.2.17 Programmable logic design process	28
Fig.3.1 Drawing of typical GEM foil with dimension n micrometers	31
Fig.3.2 Simulated field settings of a GEM	32
Fig.3.3 The GEM electronics readout system	33
Fig. 3.4 Block diagram of the system showing the tracking and trigger	34
paths (detail of inset is given in Figure 3.3)	
Fig. 3.5: VFAT3 block diagram	37