

THE USE OF LANDFILL WASTE IN THE MANUFACTURE OF CLAY BRICKS

By

Kamilia Ahmed Kamal Mohamed El-Nagar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

THE USE OF LANDFILL WASTE IN THE MANUFACTURE OF CLAY BRICKS

By Kamilia Ahmed Kamal Mohamed El–Nagar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. Magdi Fouad Abadir	Prof. Osama Abd El–Bary Ibrahim
Professor of Inorganic Industries Chemical Engineering Department Faculty of Engineering, Cairo University	Professor of Inorganic Industries Chemical Engineering Department Faculty of Engineering, Cairo University
racarty of Engineering, can o emversity	racarry or Engineering, cano chiversit

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

THE USE OF LANDFILL WASTE IN THE MANUFACTURE OF CLAY BRICKS

By Kamilia Ahmed Kamal Mohamed El–Nagar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Prof. Magdi F. Abadir, Thesis Main Advisor, Faculty of Engineering, Cairo University

Prof. Hanan Hassan El–Sersy, Internal Examiner, Faculty of Engineering, Cairo University

Prof. Mohamed El-Menshawy Shalaby, External Examiner, Central Metallurgical Research Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Kamilia Ahmed Kamal Mohamed El–Naggar

Date of Birth: 9 / 1 / 1979

Nationality: Egyptian

E-mail: kamilia_ahmed@hotmail.com

Phone.: 01146917527

Address: 6 – Takafol St. – Taawon – Haram

Registration Date: 1 / 10 / 2007

Awarding Date: / /

Degree: Master of Science **Department:** Chemical Engineering

Supervisors: Prof. Dr. Magdi Fouad Abadir

Prof. Dr. Osama Abd El–Bary

Examiners: Prof. Dr. Magdi Fouad Abadir

Prof. Dr. Hanan Hassan El–Sersy

Prof. Dr. Mohamed El–Menshawy (Professor at Central Metallurgical

Research Institute)

Title of Thesis:

The use of landfill waste in the manufacture of clay bricks

Key Words: Landfill – Waste Recycling – Fired Clay Bricks – Standards of Building Bricks

Summary:

In the present thesis, it is tried to utilize landfill waste in the manufacture of fired clay bricks. The raw materials were characterized. Mixtures were prepared, where the waste was added to the clay in different percentages. The brick specimens for each mixture were molded, dried, and then fired. It is found that the replacement of 10 wt. % of the Egyptian clay as a raw material in fired clay brick industry by the landfill waste fired at 800 °C, is recommended for its environmental and economical benefits, in addition to its improvement of brick quality.

ACKNOWLEDGEMENTS

The author's special thanks and gratitude go to God for his mercy, kindness, and support.

The author wishes to express her deep thanks and gratitude to her main supervisor Prof. M. F. Abadir, at the Chemical Engineering Department, Faculty of Engineering, Cairo University, for suggesting the research point, supervising the experimental work, in addition to his continuous encouragement.

The author also thanks Prof. Osama Abd El–Bary, at the Chemical Engineering Department, Faculty of Engineering, Cairo University, for his supervising and help.

Deepest gratitude is also due to Dr. Shereen K. Amin, Assistant Researcher Professor, at the Chemical Engineering and Pilot Plant Department, National Research Center, for supervising and following up the experimental research work. Her efforts in solving the practical problems that faced the author are deeply appreciated.

Finally, the author expresses her gratitude to her dear husband; her children beloved ones, as well as to her mum, dad, sisters, brother, and all her family members, for their continuous encouragement and help.

List of Contents

Page	?
List of Tables vi	
List of Figuresvii	ij
List of Symbolsxi	
Abstract xii	i
I. Chapter One: Introduction 1	
Aim of the present work4	
II. Chapter Two: Literature Review 6	
2.1. Clay Bricks	
2.1.1. Introduction	
2.1.2. History	
2.1.3. Definition of Clay Bricks	
2.1.4. Bricks Raw Material	
a) Clay9	
b) Water9	
c) Sand9	
2.1.5. Manufacturing Steps of Clay Masonry	
a) Winning and Storage10	
b) Raw Materials Preparation10	
c) Forming11	
d) Drying	
e) Firing and Cooling	
f) Drawing15	
2.2. Types and Classification of Clay Bricks	,

2.3. Environmental Impact of Clay Brick Industry		2.2.1. Clay Brick Types	15
2.4. Main Clay bricks Manufacturers in Egypt		2.2.2. Classification of Clay Bricks	17
2.5. The use of waste in the Manufacture of Clay Bricks 2.5.1. Introduction		2.3. Environmental Impact of Clay Brick Industry	24
2.5.1. Introduction		2.4. Main Clay bricks Manufacturers in Egypt	25
2.5.2. Waste Recycling 2.5.3. Overview of Recycled Wastes in Fired Clay Bricks		2.5. The use of waste in the Manufacture of Clay Bricks.	26
2.5.3. Overview of Recycled Wastes in Fired Clay Bricks		2.5.1. Introduction	26
2.5.3.1. Cement and Cement Dust		2.5.2. Waste Recycling	27
2.5.3.2. Fly Ash		2.5.3. Overview of Recycled Wastes in Fired Clay Bricks	27
2.5.3.3. Marble		2.5.3.1. Cement and Cement Dust	.27
2.5.3.4. Rice Hulls / Rice Husk Ash (RHA)		2.5.3.2. Fly Ash	28
2.5.3.5. Rice Straw Ash (RSA)		2.5.3.3. Marble	29
2.5.3.6. Saw Dust Ash (SDA). 2.5.3.7. Mineral Oil		2.5.3.4. Rice Hulls / Rice Husk Ash (RHA)	30
2.5.3.7. Mineral Oil 2.5.3.8. Phosphogypsum 2.5.3.9. Foundry Sand 2.5.3.10. Sewage Sludge 2.5.3.11. Boron 2.5.3.12. Spent Catalyst 2.5.3.13. Paper Pulp 2.5.3.14. Other Wastes 2.6. Landfill 2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction 3.2. Raw Materials		2.5.3.5. Rice Straw Ash (RSA)	32
2.5.3.8. Phosphogypsum 2.5.3.9. Foundry Sand 2.5.3.10. Sewage Sludge 2.5.3.11. Boron 2.5.3.12. Spent Catalyst 2.5.3.13. Paper Pulp 2.5.3.14. Other Wastes 2.6. Landfill 2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction 3.2. Raw Materials		2.5.3.6. Saw Dust Ash (SDA)	.32
2.5.3.9. Foundry Sand 2.5.3.10. Sewage Sludge 2.5.3.11. Boron 2.5.3.12. Spent Catalyst 2.5.3.13. Paper Pulp 2.5.3.14. Other Wastes 2.6. Landfill 2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction 3.2. Raw Materials		2.5.3.7. Mineral Oil	.33
2.5.3.10. Sewage Sludge		2.5.3.8. Phosphogypsum	.33
2.5.3.11. Boron 2.5.3.12. Spent Catalyst 2.5.3.13. Paper Pulp 2.5.3.14. Other Wastes 2.6. Landfill 2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction 3.2. Raw Materials		2.5.3.9. Foundry Sand	.33
2.5.3.12. Spent Catalyst		2.5.3.10. Sewage Sludge	34
2.5.3.13. Paper Pulp		2.5.3.11. Boron	35
2.5.3.14. Other Wastes 2.6. Landfill. 2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction. 3.2. Raw Materials.		2.5.3.12. Spent Catalyst	
2.6. Landfill			
2.6.1. Introduction 2.6.2. Landfilling in Egypt 2.6.3. Landfill Waste Management III. Chapter Three: Experimental Work 3.1. Introduction 3.2. Raw Materials		2.5.3.14. Other Wastes	36
2.6.2. Landfilling in Egypt		2.6. Landfill	42
2.6.3. Landfill Waste Management		2.6.1. Introduction	42
III. Chapter Three: Experimental Work		2.6.2. Landfilling in Egypt	45
3.1. Introduction		2.6.3. Landfill Waste Management	46
3.2. Raw Materials	III.	Chapter Three: Experimental Work	48
		3.1. Introduction	49
3.3. Assessment of Raw Materials		3.2. Raw Materials	49
		3.3. Assessment of Raw Materials	49

3.3.1. Chemical Analysis (XRF)	49
a) The Instrument	.49
b) Sample Preparation	.50
3.3.2. Determination of Free Silica	50
3.3.3. Determination of Organic Matter	51
3.3.4. Determination of the Powder Density	. 52
a) Procedure	.52
b) Calculations	
3.3.5. Mineralogical Analysis (XRD)	. 52
3.3.6. Thermal Analysis (DTA and TGA)	53
3.3.7. Screen Analysis	54
3.4. Preparation of Mixtures	55
3.4.1. Determination of Plasticity of the Prepared Mixtures	. 55
3.5. Formation of Building Brick Samples	56
3.5.1. Determination of Shrinkage for Prepared Samples	56
3.5.2. Determination of Compressive Strength	. 57
3.6. Firing of Building Brick Samples	58
3.7. Testing of Fired Brick Samples	59
3.7.1. Determination of Firing Shrinkage	. 59
3.7.2. Determination of Cold and Boiling Water Absorption and	
Saturation Coefficient	. 59
A) Cold Water Absorption	.60
B) Boiling Water Absorption	.60
C) Saturation Coefficient	.61
3.7.3. Determination of Apparent Porosity, and Bulk Density	61
a) Procedure	.61
b) Calculations	.61
3.7.4. Determination of Green Compressive Strength	62
3.7.5. X-Ray Diffraction (XRD) for Fired Brick Samples	62

VII. Arabic Summary	113
VI. References	104
V. Chapter Five: Conclusions	100
4.3.2. Compressive Strength	93
f) Apparent Porosity	88
e) Bulk Density	88
d) Saturation Coefficient	
c) Boiling Water Absorption	
b) Cold Water Absorption	
a) Firing Shrinkage	
4.3.1. Physical Properties	
4.3. Properties of Fired Samples	81
4.2.3. Dry Compressive Strength	75
4.2.2. Drying Shrinkage	75
4.2.1. Plasticity of Paste	72
4.2. Properties of Unfired Samples	72
4.1.4. Screen Analysis of Raw Materials	71
4.1.3. Thermal Analysis	68
4.1.2. Mineralogical Analysis	65
4.1.1. Chemical Analysis	64
4.1. Assessment of Raw Materials	64
IV. Chapter Four: Results and Discussion	63
3.7.6. Microscopic Investigations	
	60

List of Tables

	Page
I. Chapter Two: Literature Review	
Table (2.1): Specifications for bricks	16
Table (2.2): Physical properties in brick specifications	18
Table (2.3): Appearance classifications	19
Table (2.4): Dimensional tolerances	20
Table (2.5): Distortion tolerances	20
Table (2.6): Maximum permissible range of chippage	22
Table (2.7): Requirements for void areas	23
Table (2.8): Clay Bricks Manufacturers in Egypt	25
Table (2.9): Sources of municipal solid waste	45
Table (2.10): Typical composition of municipal solid wa	ste in
Egyptian cites	46
II. Chapter Three: Experimental Work	
Table (3.1): Set of sieves were used for screen analysis test.	54
III. Chapter Four: Results and Discussion	
Table (4.1): Chemical analysis of raw materials	64
Table (4.2): Free silica and organic matter in raw materials	65
Table (4.3): Powder density, and bulk density of raw materia	als 65
Table (4.4): Thermal analysis of clay	68
Table (4.5): Compressive strength of the inorganic constitue	ents of
waste	75

IV. Chapter Five:	Conclusion				
Table (5.1), Com					
Table (3.1) . Collij	parison with	both E	Egyptian	and	American
Standards	•••••		•••••		

Pag	ze
Chapter Two: Literature Review	
Figure (2.1): Diagrammatic representation of the manufacturing	
process1	0
Figure (2.2): Pug milling operation	1
Figure (2.3): A pug mill (Vacuum auger)	2
Figure (2.4): Stiff – Mud Process	2
Figure (2.5): Elimination of water during drying	3
Figure (2.6): Tunnel kiln with schematic operation and	
temperature profile1	4
Figure (2.7): Packaging of clay masonry	5
Figure (2.8): Distortion measurements	1
Figure (2.9): A section of a landfill located in Egypt 4	4
Chapter Three: Experimental Work	
Figure (3.1): AXIOS, panalytical 2005, Wavelength Dispersive	
(WD–XRF) Sequential Spectrometer 5	0
Figure (3.2): Set of sieves were used for screen analysis test 5	4
Figure (3.3): Pfefferkorn plasticimeter	5
Figure (3.4): Pfefferkorn Plasticity Method	6
Figure (3.5): The laboratory hydraulic press	7
Figure (3.6): Compressive strength testing machine 5	8
Figure (3.7): The laboratory furnace	9

III. Chapter Four: Results and Discussion

Figure (4.1): XRD pattern for clay
Figure (4.2): XRD pattern for landfill waste
Figure (4.3): Thermal analysis of clay
Figure (4.4): Thermal analysis of landfill waste
Figure (4.5): Particle size analysis of raw materials
Figure (4.6): Determination of Pfefferkorn plasticity
Figure (4.7): Effect of waste content on Pfefferkorn plasticity
number
Figure (4.8): Effect of waste addition on linear drying shrinkage 76
Figure (4.9): Relation between Linear drying shrinkage and
Plasticity number
Figure (4.10): Effect of waste addition on volume drying
shrinkage78
Figure (4.11): Calculated vs. Experimental values of volume
drying shrinkage79
Figure (4.12): Effect of waste addition on green compressive
strength80
Figure (4.13): Effect of waste addition on linear firing shrinkage 82
Figure (4.14): Effect of waste addition on cold water absorption 84
Figure (4.15): Effect of waste addition on boiling water absorption 85
Figure (4.16): Effect of waste addition on saturation coefficient 86
Figure (4.17): Inverse correlation between saturation coefficient
and linear firing shrinkage
Figure (4.18): Effect of waste addition on bulk density 89
Figure (4.19): Effect of waste addition on apparent porosity 90
Figure (4.20): Linear plot of reciprocal of apparent porosity
against reciprocal of boiling water absorption
Figure (4.21): Calculated vs. Experimental values of porosity 93

Figure (4.22): Effect of waste addition on compressive strength	94
Figure (4.23): XRD pattern for 10 % waste addition sample fired	
at 800 °C	95
Figure (4.24): Linearized relation between strength and porosity	96
Figure (4.25): SEM micrograph with EDAX results of 10 % waste	
addition sample fired at 800 °C, (1000x)	98
Figure (4.26): EDAX calcium ions distribution in 10 % waste	
addition sample fired at 800 °C	99
Figure (4.27): Presence of black core and subsequent mechanical	
failure of samples containing from 15 % up to 30 % waste	
fired at 850 °C	99

Symbols

XRF X-Ray Flourecence.

XRD X-Ray Diffraction.

DTA Differential Thermal Analysis.

TGA Thermo – Gravimetry Analysis.

SEM Scanning Electron Microscope.

FS Free Silica.

OM Organic Matter.

CEC Cation Exchange Capacity.

SSA Specific Surface Area.

 ρ_S Powder Density.

C Compressive Strength.

LOI Loss on Ignition.

P Apparent Porosity.

ρ_b Bulk Density.

WA Water Absorption.

SW Severe Weathering.

MW Moderate Weathering.

NW Negligible or No Weathering.