DNA REPAIR GENE XRCC1 POLYMORPHISM IN EGYPTIAN ACUTE LEUKEMIA PATIENTS

Thesis

Submitted in Partial Fulfillment
For the M.Sc Degree in Clinical and
Chemical pathology

<u>By</u> Dalia Boshra Zikry Girgis

M.B; B.Ch.

(Cairo University)

Under the Supervision of

Prof.Dr. Shahira Amin Zayed

Professor of Clinical and Chemical pathology,

Faculty of Medicine,

Cairo University

Dr. Rania Fawzy Hammoud

Lecturer of Clinical & Chemical Pathology Faculty of Medicine,

Cairo Universit **/**

Faculty of Medicine.

Cairo University 200 V

چین تصلیح دی إن إي اکس آر سی سی بولیمورفیسم فی مرض لوکیمیا مصریین

رسالة مقدمة من

الطبيبة / داليا بشرى زكرى

توطئة للحصول على درجة الماچستير في الباثولوچيا الإكلينيكية و الكيميائية

حفايشأ حيعة

أد / شهيره أمين زايد

أستاذ الباثولوچيا الأكلينيكية و الكيميائية

كلية الطب - جامعة القاهرة

د / را نیا فوزی حمود

مدرس الباثولوچيا الأكلينيكية و الكيميائية

كلية الطب - جامعة القاهرة

جامعة القاهرة

ACKNOWLEDGEMENT

First and before all, I would like to express my deepest thanks to ALLAH, who helped me to pass safely through this work.

I wish to express my deepest gratitude and appreciation to **Prof. Dr. Shahira Amin Zayed,** Professor of Clinical and Chemical Pathology,

Faculty of Medicine, Cairo University.

I am also deeply indebted and privileged by the supervision of **Dr.Rania Fawzy Hammoud,** Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University.

I wish also to express my sincere gratitude & profound obligation to **Dr. Manal Michel Wilson** Assistant Professor of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University for her precious help, guidance and continuous encouragement throughout the study.

Also, I can not forget the help of:

Dr. Heba H. Abou-Elew, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University.

Dr.Mohamed Meshref, Lecturer of Radiotherapy, Faculty of Medicine, Cairo University.

Dr. Ola M. R. Khorshed, Lecturer of Medical Oncology, National Cancer Institute, Cairo University.

Last, but not least I would like to express my gratitude to my husband, my father, my mother and my children for their continuous support & encouragement, who gave me love to finish this work.

LIST OF ABBREVIATIONS

: \(\frac{1}{2}\)-mercaptopurine.

A : Adenine.

aa : Amino acid.

ADPRT : ADP-ribosyltransferase.

ADR : Adriamycin.

AFB '-DNA : Aflatoxin B '-DNA adducts.

ALL : Acute lymphoblast leukemia.

AML : Acute myeloblastic leukemia.

AP : Apyrimidinic.

: Apurinic or apyrimidinic

APE \ endonuclease \.

: Apurinic/apyrimdinic DNA

APEX endonuclease.

Arg : Arginine.

A-T : Ataxia Telangiectasia syndrome.

ATL : Adult T-cell leukemia.

ATP : Adenosine triphosphate.

ATRA : Adenosine triphosphate.

AUL : Acute undifferentiated leukemia.

BER : Base excision repair.

BM : Bone marrow.

BMT : Bone marrow transplantation.

bp : Base pair.

BRCA T : Breast cancer susceptibility gene T.

Breast cancer susceptibility gene T.

C : Cytosine.

CBC : Complete blood count.

CD : Clusters of differentiation.

CDNA : Complementary – deoxyribonucleic acid.

CEN : Centeromere.

CH^r : Methyl group

cIg : Cytoplasmic immunoglobulin.

CK : Cycline Kinase.

CR : Complete remission.

CSF : Cerebrospinal fluid.

C-terminal : COOH terminal carboxylic group terminal.

Cyt μ : Cytoplasmic muta chain.

D; **d** : Day.

DDI : Death during induction.

Del : Deletion.

: Disseminated intravascular

DIC coagulopathy.

dl : Deciliter.

DNA : Deoxy ribonucleic acid.

DNA-PK(cs) : DNA-protein kinase.

DNR : Douanorubicin.

dNTP : Dinucleotide triphosphate.

dRpase : Deoxyribophor-diesterase

Ds : Double strand.

DSBs : Double strand breaks.

EDTA : Ethylenediamine tetra-acetic acid.

EMS : Ethylmethane sulphonate.

: Excision repair cross-

complementing rodent deficiency,

ERCC' group '.

: French British American

FAB classification of acute leukemia.

FANC Fanconi anemia protein. :

FANCC Fanconi anemia protein C. :

FANCD Fanconi anemia protein D. :

Flap endonuclease \. **FEN**¹

 \mathbf{G} Guanine.

A resting phase in the cell cycle

G' phase proceeding the S phase.

G 7 phase Premitotic phase; Postsynthetic.

Gln Glycine. Gram.

gm

GPA Erythrocyte glycophorin A.

Hb Haemoglobin.

Human leucocytes antigen DR loci

HLA-DR in classII.

HNPCC Hereditary non polyposis colon cancer.

HRHomologous repair.

hrs Hours.

HTLV Human T-cell lymphotropic virus. :

Inversion. Inv

IR Ionizing radiation.

IVIntravenous.

KCl Potassium chloride.

Kda Kilo Dalton.

Acute lymphoblastic leukemia type

L١

Acute lymphoblastic leukemia type

L۲ ۲.

Acute lymphoblastic leukemia type

L٣ ٣.

L-Asparginase. L-Asp

Lig I : Ligase I.

Lig III : Ligase II.

LN : Lymph node.

: Acute myeloblastic leukemia

M· minimally differentiated.

: Acute myeloblastic leukemia

M' without maturation.

: Acute myeloblastic leukemia with

MY maturation.

M^r : Acute promyelocytic leukemia.

M : Acute myelomonocytic leukemia.

: Acute myelomonocytic leukemia

M & E \ with Eosinophils.

: Acute monoblastic leukemia

Moa without differentiation.

: Acute monoblastic leukemia with

M°b differentiation.

M? : Acute erythroleukemia.

My : Megakaryocytic leukemia.

MDS : Myelodysplastic syndrome.

mEq : Milli equivalent.

Met : Methionine.

mg : Milligram.

MgCl₁. \hat{H}₁O : Magnesium chloride hexahydrate.

min : Minute.

MLH: : DNA-mismatch repair protein.

MLL : Myeloid-lymphoid leukemia gene.

MMC : Mitomycin C.

MMR : Mismatch repair.

MoAb : Monoclonal antibody.

MPO : Myeloperoxidase.

: Meiotic recombination

MRE' homologue A.

MTX : Methotrexate.

Myc : Avian myelomytosis gene.

NaCl : Sodium chloride.

NAD+ : Nicotinamide adenine dinucleotide.

NaF : Sodium fluoride.

NaHCO^{*} : Sodium bicarbonate.

NBS : Nijmegan breakage syndrome.

NER : Nucleotide excision repair.

NHEJ : Nonhomologous end joining repair.

NOS : Not otherwise categorized.

np : Nucleotide pairs.

NTD : N-terminal domain.

N-terminal : NHY terminal aminogroup terminal.

oggi : \(\lambda \- \text{oxoguanine DNA glycosylase} \)

: Upper short arm of the

P arm chromosome.

Por : Tumor suppressor gene.

: Poly (ADP-ribose); poly

PARP adiporibose polymerase.

PAS : Periodic acid Schiff.

PB : Peripheral blood.

PCNA : Proliferating cell nuclear antigen.

PCR : Polymerase chain reaction.

PML : Promyelocytic leukemia.

: Fusion protein disrupt proliferation

PML-RARAα and differentiation in M^r-RARA;

retinoic acid receptor.

PNK : Polynucleotide kinase.

PO : Per arum.

PO: : Phosphate group.

Pol β : DNA polymerase b.

PR : Partial remission.

q arm : Lower long arm of the chromosome.

R : Refractory to treatment.

Rad or Recombination protein Rad or.

RAS : Oncogene protein.

RF-C : Replication factor C.

: Restriction fragment length

RFLP polymorphism.

ROS : Reactive oxygen species.

RPA : Replication protein A.

: Reverse transcriptase polymerase

RT-PCR chain reaction.

: DNA synthesis phase of the cell

S phase cycle.

SCE : Sister chromatid exchange.

SDS : Sodium dodecyl sulphate.

sIgμ : Surface immunoglobulin μ.

sIgκ : Surface immunoglobulin κ.

 $\mathbf{sIg}\lambda$: Surface immunoglobulin λ .

SPSS : Statistical package for social science.

SSBR : Single strand break repair.

SSBs : Single strand breaks.

T : Thymine.

t : Translocation.

TAR : Thrombocytopenia absent radii.

: Terminal deoxynucleotidyl

TdT transferase.

TE : Tris EDTA.

TFIIH : General transcription factor II H.

TLC : Total leucocytic count.

Trp : Tryptophan.

UV : Ultra violet.

: Variable-diversity-joining segment

rearrangement of heavy chain in

V (D) J immunoglobulin gene.

VBYY : Vitamin BYY.

VCR : Vincristine.VP-17 : Etoposide.

WHO : World Health Organization.

XP : Xeroderma pigmentosum.

XPC : Xeroderma pigmentosum, group C.

XPD : Xeroderma pigmentosum, group D.

XPF : Xeroderma pigmentosum, group F.

XPG : Xeroderma pigmentosum, group G.

: X-ray cross complementing

defective repair in Chinese hamster

XRCC' cells '.

δ–pol : Polymerase delta.

ε-pol : Polymerase epsilon.

** List of figures:

Number	Figure	Page
1	Simplified diagram of DNA coiling.	٤
۲	Sugar phosphate backbone and nucleotide pairing of the DNA.	0
٣	The two strands go in opposite directions.	٥
٤	DNA replication.	٧
٥	Chromosomal structure.	٩
٦	Simplified representation of DNA repair mechanisms.	١٦
٧	Schematic presentation of base excision repair pathway	19
٨	Diagram of the short-patch and long-patch base excision repair pathways.	۲.
٩	Model for selective targeting of DNA Ligase I and III to DNA replication and different repair pathways.	71
١٠A	Simplified diagram of nucleotide excision repair pathway.	74
۱۰В	Schematic presentation of nucleotide excision repair pathway.	۲ ٤
11	Schematic presentation of mismatch repair.	77
١٢	Basic steps of single strand break repair.	۲۸
١٣	Repair of DNA double strand breaks (DSBs) by non-homologous end joining in mammalian cells.	٣.
١٤	End processing step in NHEJ.	٣١
10	Homologous recombination of double-strand-break repair.	44
١٦	DNA damaging agents and repair mechanisms.	80

Number	Figure	Page
١٧	Schematic presentation of XRCC interacting regions	٣٩
	and protein partners.	
١٨	DNA liaise III and PARP possess homologous zinc finger motifs.	٤١
19	XRCC' role during the initial steps of BER and SSBR.	٤٥
۲.	XRCC\ protein (polymorphic sites) contains \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٤٨
71	ALL (L¹, Lˇ, Lˇ).	٦١
77	AML $(M^{\gamma}, M^{\gamma}, M^{\gamma}, M^{\xi}, M^{\circ})$.	٧٦
77	Frequency of diagnosis of AML patients.	117
7 £	Gender in Acute leukemia cases.	115
70	Clinical findings in acute leukemia patients.	١١٦
۲٦	Mean TLC, Platelet count and BM blasts in acute leukemia patients.	١١٦
77	RFLP analysis of XRCC\ codon \95 PCR product.	117
۲۸	RFLP analysis of XRCC \ codon \ \ ^9 \ PCR product.	١١٨
۲۹	Genotype distribution of XRCC' polymorphisms codon '95 in acute leukemia patients and control subjects.	171
٣٠	Genotype distribution of XRCC polymorphisms codon ⁷⁹⁹ in acute leukemia patients and control subjects.	177
٣١	Frequency of response to therapy among cases.	١٢٧
٣٢	Frequency of response to therapy in ALL patients (codon ۱۹٤) in relation to their estimated genotypes.	18.

Number	Figure	Page
٣٣	Outcome summary of ALL patients and their estimated	١٣١
	genotypes for codon 195.	, , ,
٣٤	Frequency of response to therapy in AML patients	187
	(codon 195) in relation to their estimated genotypes.	, , ,
٣٥	Relation between outcome summary of AML patients	١٣٣
	and their estimated genotypes for codon 195.	
٣٦	Frequency of response to therapy in ALL patients	١٣٦
	(codon ^{rqq}) in relation to their estimated genotypes.	
٣٧	Relation between outcome summary of ALL patients	187
	and their estimated genotypes for codon ^{٣٩٩} .	
٣٨	Frequency of response to therapy in AML patients	١٣٨
	(codon ^{rqq}) in relation to their estimated genotypes.	117
	Relation between outcome summary of AML	
٣٩	patients and their estimated genotypes for codon	189
	799.	

** List of Tables:

Number	Title	Page
١	Mechanisms of DNA repair.	1 🗸
۲	FAB morphologic classification of ALL.	٦.
٣	WHO proposed classification of lymphoid neoplasms.	77
٤	WHO proposed classification of acute lymphblas leukemia.	7 £
٥	Immunological Classification of ALL.	٦٦
٦	Cytogenetic translocations associated with specific molecular genetic abnormalities in ALL.	٦٧
٧	Correlation of prognosis with bone marrow cytogenet findings in acute lymphoblastic leukemia.	79
٨	Risk classification system in ST. JUDE total therapy study XIV.	٧.
٩	Conditions predisposing to the development of AML.	٧٢
١.	Morphologic (FAB) classification of AML.	٧٥
11	Leukocyte count in typical hypergranular promyelocytic leukemia and the microgranular variant.	۸۰
١٢	Clinical features of acute myeloid leukemia related to Pathophysiology.	٨٤
١٣	Cytological features of blasts in acute myeloid and acute lymphoblastic leukemias.	۸٦
١٤	Antigen expression in acute myeloid leukemias.	۸٧
10	Prognostic factors in AML.	۸۸
١٦	Indvidual data of ALL patients.	1.0