The Shear Bond Strength of the Conventional Adhesive And a New Self-Etch Primer/Adhesive; An in vitro Comparative Study.

Master Thesis

By

Hatem Salah Ibrahim Saif El Din

B.D.S. (2000)

Submitted to the Faculty of Dentistry,
Ain Shams University

In Partial Fulfillment for the Requirements of Master Degree in Orthodontics

2007

وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمْ وَكَانَ فَضْلُ

اللهِ عَلَيْكَ عَظِيمًا

النساء (113)

SUPERVISORS

Professor Dr. Khaled Moustafa Fawzy

Professor of Orthodontics,
Head of Orthodontic Department,
Faculty of Dentistry,
Ain Shams University.

Assistant Prof. Dr. Noha Ezzat Sabet

Assistant Professor of Orthodontics,
Faculty of Dentistry,
Ain Shams University.

Dedicated To:

My Wife,

£

My Family.

ACKNOWELDGMENT

I would like to express my sincere gratitude to Professor

Dr. K haled Moustafa Fawzy, Professor of Orthodontics,

Head of Orthodontic Department, Faculty of Dentistry,

Ain Shams University, for his unfailing interest, untiring

help, instructive critism, keen supervision and support.

I am very deeply obliged and grateful to Assistant Professor Or. Noha Ezzat Sabet, Assistant Professor of Orthodontics, Faculty of Dentistry, Ain Shams University, for her kind suggestions, enthusiasm, valuable advice and guidance in designing and improving the study.

I am grateful to Professor, Dr. Hamdy H. El-Zahed,
Vice Dean of Society & Environmental Affairs, Faculty of
Dentistry, Ain Shams University, for his support and
guidance.

Special thanks are due to Dr. Farid Sabry El Askary,

Lecturer of Operative Dentistry, Conservative Dentistry

Department, Faculty of Dentistry, Ain Shams

University, for the valuable advice, constructive notes and innovative ideas.

Great thanks are due to my colleagues in the orthodontic

Department, for their support and motivation.

Hatom Saif El Din

TABLE OF CONTENTS

LIST	OF FIGURES	V	
LIST	OF TABLES	vii	
LIST OF SCHEMATIC DIAGRAMS		ix	
I.	INTRODUCTION	1	
II.	LITERATURE REVIEW	4	
III.	AIM OF THE STUDY	42	
IV.	MATERIAL AND METHODS	43	
V.	RESULTS	69	
VI.	DISCUSSION	86	
VII.	SUMMARY	103	
VIII.	CONCLUSION	105	
IX.	RECOMMENDATIONS	107	
X.	REFRENCES	108	
APPE	ENDIX		
ARABIC SUMMARY			

LIST OF FIGURES

Fig. (1): Monolok ² Kit	45
Fig. (2): Brajen Unibond kit	46
Fig. (3): Brajen Unibond Primer A, Primer B	47
Fig. (4): Homogenous pink color of Primer A	
and Primer B mixture.	47
Fig. (5): Force Gauge	56
Fig. (6): Custom-made form made of Teflon	
and the mounting jig	57
Fig. (7): Instron universal testing machine	59
Fig. (8): Olympus stereomicroscope	61
Fig. (9): Sputter coater device	65
Fig. (10): Specimens secured in aluminum	
stubs after gold sputtering	65
Fig. (11): Jeol scanning electron microscope	66

Fig. (12): Bar chart showing mean Shear bond streng	gth
values and standard deviation (±SD)	
of conventional primer/adhesive	72
Fig. (13): Bar chart showing mean Shear bond streng	gth
values and standard deviation (±SD)	
of self-etch primer/adhesive	72
Fig. (14): Survival probability versus shear load	
for conventional primer/adhesive	78
Fig. (15): Survival probability versus shear load	
for self-etch primer/adhesive	78
Fig. (16): ARI scores	82
Fig. (17): SEM of unetched polished enamel	84
Fig. (18): SEM of phosphoric acid etched enamel	84
Fig. (19): SEM showing effect of self-etch primer	
on enamel	85

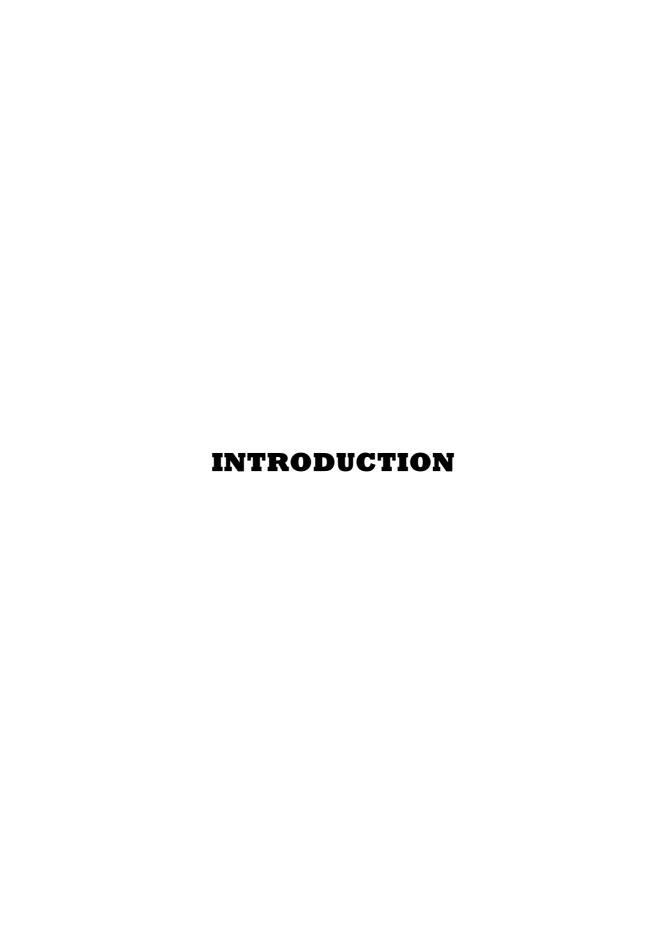

LIST OF TABLES

Table (I): Descriptive statistics and the results of the	
analysis of variance and Tukey test compar	ing
the shear bond strength (in MPa) of	
Conventional Primer/Adhesive	71
Table (II): Descriptive statistics and the results of the	
analysis of variance and Tukey test	
comparing the shear bond strength (in MP	a)
of self-etch Primer/Adhesive	71
Table (III): Student's t-test results of subgroup IA	
and subgroup IIA	74
Table (IV): Student's t-test results of subgroup IB	
and subgroup IIB	74
Table (V): Student's t-test results of subgroup IC	
and subgroup IIC	74
Table (VI): Student's t-test results of subgroup ID	
and subgroup IID	74

Table (VII): Weibull modulus and characteristic	
strength results of Conventional	
Primer/Adhesive	77
Table (VIII):Weibull modulus and characteristic	
strength results of self-etch	
Primer/Adhesive	77
Table (IX): Frequency distribution of Adhesive	
Remnant Index of Conventional	
Primer/Adhesive	81
Table (X): Frequency distribution of Adhesive	
Remnant Index of self-etch	
Primer/Adhesive	81

LIST OF SCHEMATIC DIAGRAMS

Schematic diagram (1): Experimental design for	
SBS test	50
Schematic diagram (2): Experimental design for	
the enamel surface treatment test	52

INTRODUCTION

One of the most significant developments in the field of orthodontics over the past decade was the successful bonding of brackets to teeth, replacing the old system of cementing stainless steel bands.

The introduction of direct bonding to orthodontics has improved the overall treatment results. This is due to improvement in esthetics, elimination of pretreatment separation, easier detection of caries, decreased gingival irritation and easier plaque removal by the patient¹.

The direct bonding technique involves conditioning of the enamel surface with phosphoric acid. Etching facilitates resin penetration into the tissue and provides the mechanism by which the resin bulk is retained in the enamel, mediating the attachment of the bracket¹.

Acid-etching technique has many undesirable disadvantages: (1) The multiple steps required². (2) The necessity of strict adherence to a dry field² as success of resin bonding systems is negatively affected by contamination with oral fluids such as saliva and plasma³. (3) The inability to confine the etching solution to the area that will be covered by the attachment that increases the risk of decalcification of enamel surface⁴. (4) Enamel fractures created during debonding⁵. (5) Resin residue

that cannot be easily removed because of enamel porosity, and enamel loss caused by burs or disks when the composite residue is removed⁶⁻⁸.

Searching for improved physical characteristics has lead to the development of self-etch primer/adhesive system⁹. This system proposed many advantages such as elimination of multi-step acid etching, reducing residual adhesive at debonding, decreasing the depth of enamel dissolution and maintaining adequate bond strength to the enamel in dry and contaminated fields⁸.

Despite advances in materials, the failure of adhesive bonds during orthodontic treatment varies between 0.5% and $16\%^{10,11}$. This may be inconvenient and expensive for both patient and orthodontist and can compromise treatment. In the United Kingdom, the cost of repairs for fixed appliances in 1997 was in excess of £ 4 million¹².

Therefore, it would be an advantage to find a material that would further improve the bonding procedure by saving time and minimizing enamel loss while maintaining a clinically acceptable bond strength¹³.

In light of these data, there has been a need to conduct a comparison between the conventional acid etching bonding system and self-etch primer bonding system in terms of their