

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING PUBLIC WORKS DEPARTMENT

RELIABILTY OF WATER DISTRIBUTION NETWORKS

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted by

Moatassem Bellah Mohamed Ghoniema

Supervised by

Prof. Hamdy Ibrahim Ali Prof. Mohamed Shabaan Negm Dr. Mohamed Hassan Abdel-Razik

July 2007

ABSTRACT

Most of the aged-infrastructures in our communities, including water distribution networks, have deteriorated to the point that their serviceability has drawn much attention. There has been growing awareness that water distribution networks should be designed and maintained to sustain a certain level of reliability. In the phase of planning and design of the optimal system configuration, required reliability should be included as an important parameter. Existing practice, the mutual comparison of different systems without including reliability as criteria, can lead the designer to an unreliable solution that needs further repairs or remediation.

This thesis demonstrates the use of Monte Carlo techniques in evaluating the reliability of water resources systems. The proposed methodology considers both: mechanical reliability (probability of pipe and pump failure) and hydraulic reliability (pressure and demand). This model is useful for determining reliability of systems with different configurations and complexity. Also, methodology for optimal reliability allocation, based on genetic algorithms, is proposed. That methodology, coupled with the reliability evaluation method, is an efficient tool for solving problems of optimal allocation of water distribution network reliability.

Monte Carlo Analysis is a powerful tool for modeling reliability of systems. Proper application of this technique requires understanding of its underlying principles. In this, thesis, Monte Carlo analysis is explained at a fundamental level with emphasis on its application in estimating the reliability of water distribution systems. The first part of this thesis, explains step-by-step how to perform a Monte Carlo analysis. The second part describes the different sources of variation in water distribution networks, their statistical distribution and how they are affected by aging. The final part of this thesis describes proposed reliability analysis methodology in detail. The proposed network reliability analysis methodology was coded using MATLAB and was applied it to a real water

distribution network designed for the city of Abusweir. The analysis results for the Abusweir network are then discussed and different alternatives to improve the network reliability are proposed and evaluated. The proposed alternatives improve the network reliability from 64% for the original design to up to 94%. Extending the proposed statistical network solver to optimization frameworks is also explained.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Prof. Hamdy Ibrahim, Prof. Mohamed Shabaan and Dr. Mohamed Hassan for their continuous supervision, encouragement and helpful suggestions that aided me throughout my design flow. I must also thank them for their patience, advice and for providing me with the required references.

I am indebted to Dr. Mohamed Hassan and his design office for their profound encouragement and support on all the design criteria and the maps that were used in my design.

Special thanks go to my company (GASCO) collogues for their continuous help and for their understanding and willingness to help.

All of this was made possible by the love and encouragement of my family. I am deeply indebted to my parents Prof. Mohamed Ghoneima and Mrs. Madiha Abdalla for their immense love, support and for teaching me the value in accumulating the wealth of knowledge. I am also very fortunate to have the support of my brother Maged, who helped me in the MATLAB simulation, as well as my sister Marwa who helped in writing this thesis.

Needless to say, without all the above help and support, finishing my design and writing this thesis would not have been possible.

Contents

CHAPTER	1.INTRODUCTION	1
1.1.	General	1
1.2.	Components of Water Distribution Networks	1
1.2.1.	Pipes	2
1.2.2.	Pipe-Network Configuration	4
1.2.3.	Storage Tanks	4
1.2.4.	Pumps	5
1.2.5.	Valves	5
1.2.6.	Hydrants	6
1.3.	Reliability of Water Distribution Networks	6
1.4.	The Objectives of this Research	7
1.5.	Methodology	7
1.6.	Structure of the Thesis	9
CHAPTER	2.LITERATURE REVIEW	. 11
2.1.	Introduction	. 11
2.2.	Types of Reliability	. 11
2.2.1.	Mechanical Reliability	. 12
2.2.2.	Hydraulic Reliability	. 12
2.3.	Methods of Network Reliability Evaluation	. 12
2.3.1.	Conditional Probability Approach	. 13
2.3.2.	Cut-set Method	. 13
2.3.3.	Tie set analysis	. 14
2.3.4.	Connection Matrix Method	. 14
2.3.5.	Event Tree Techniques	. 14
2.3.6.	Fault Tree Analysis	. 15
2.4.	Approaches for Reliability Evaluation	. 15
CHAPTER	3.MONTE CARLO ANALYSIS	. 21
3 1	Introduction	21

3.2.	Basic	s of Monte Carlo Methods	22
3.3.	Conti	nuous Random Variables	24
3.3.1.	Proba	ability Density Function (pdf)	24
3.3.2.	Cumu	ulative Density Function (cdf)	24
3.3.3.	Exped	ctation Value (Mean) and Variance of Continuous Random	Variables
			25
3.3.4.	Exam	ples of Probability Density Functions	25
3.3.4	.1.	Uniform Distribution	25
3.3.4	.2.	Normal (Gaussian) Distribution	27
3.3.4	.3.	Exponential Distribution	28
3.3.4	.4.	Lognormal Distribution	30
3.3.4	.5.	Weibull Distribution	32
3.3.5.	Equiv	valent Continuous Probability Density Functions	35
3.4.	Statis	tical Sampling from Probability Density Functions	35
3.4.1.	Trans	formation of Probability Density Functions	36
3.4.2.	Samp	ling through CDF Inversion	37
3.4.3.	Error	and Efficiency of Monte Carlo Analysis	38
CHAPTER 4	4.SOUI	RCES OF VARIATION IN WATER DISTRIBUTION NET	ΓWORKS
			40
4.1.	Introd	luction	40
4.2.	Noda	l Demand	41
4.2.1.	Statis	tical Distribution of Nodal demands	44
4.3.	Pipe I	Roughness	44
4.3.1.	Pipe A	Aging	46
4.4.	Pipe I	Leaks	48
4.4.1.	Facto	rs leading to leaks from pipeline facilities	49
4.4.1	.1.	Leaks from Pipes	49
4.4	4.1.1.1	Pipe Cracks	49
4.4	4.1.1.2	Pipe Corrosion	49
4.4	4.1.1.3	Leaks from Joints	50
4.4.2.	Estab	lishing the work cycle	50

4.4.3.	Statistical Distribution of Pipe Leaks	51
4.5.	Pipe Failure	52
4.5.1.	Forces on Network Pipes	52
4.5.2.	Failure Modes	53
4.5.3.	Modeling Failure Rate and Failure Probability	59
4.5.3	.1. Failure Rates for Nondeteriorating Network Components	61
4.5.3	.2. Failure Rates for Deteriorating Network Components	62
CHAPTER :	5.PROPOSED STATISTICAL NETWORK ANALYSIS METHOD	OLOGY
		64
5.1.	Introduction	64
5.2.	Proposed Network Reliability Analysis Methodology	65
5.2.1.	Network Description	66
5.2.2.	System Variable Generator	66
5.2.3.	Network Solver	66
5.2.3	.1. Flow Adjustment Algorithm: Solution of the Node-Loop Equ	ations70
5.2.4.	Output Distribution Generation	72
5.3.	Case Example: Abusweir Network	72
5.3.1.	Network Description	72
5.3.2.	Reliability Analysis Results for the Abusweir Network	77
5.3.3.	Alternatives to Improve the Abusweir Network Reliability	89
CHAPTER (6.CONCLUSIONS	95
CHAPTER 7	7.FUTURE WORK	97
APPENDIX	A Network Optimization	99
A.1	Optimization Methods	100
A.1.1	Trial-and-Error Approach	100
A.1.2	Partial Enumeration Method	100
A.1.3	Nonlinear Programming Methods	101
A.1.4	Search Methods	101
A.1.5	Genetic Algorithms	102
A.1.6	The Treatment of the Design Optimization Problem with	Multiple
Ohiecti	MAG	103

A.1.7 R	eliability-Based Network Optimization	104
APPENDIX B	MATLAB Source Code	106
REFERENCES	119	

List of Figures

Figure 1-1. Water Distribution System
Figure 1-2. Two Basic Configurations for Water Distribution Systems (A) Branched
configuration (B) Looped configuration
Figure 1-3. Proposed Reliability Analysis Methodology
Figure 1-4. Structure of this thesis
Figure 3-1. Probability density function of a uniform distribution
Figure 3-2. Cumulative density function of a uniform distribution
Figure 3-3. Standard normal probability density function for different μ and σ
Figure 3-4. Normal cumulative density function for different μ and σ
Figure 3-5. Exponential probability density function for different λ values
Figure 3-6. Exponential cumulative density function for different λ values
Figure 3-7. Lognormal probability density function for μ =0 and different σ 31
Figure 3-8. Lognormal cumulative density function for μ =0 and different σ
Figure 3-9. Weibull probability density function for θ =0, and different λ and k values. 33
Figure 3-10. Weibull cumulative density function for θ =0, and different λ and k values
Figure 4-1. A typical diurnal curve
Figure 4-2. Diurnal curves for different user categories
Figure 4-3. Pipe corrosion and tuberculation [Courtesy of Donald V. Chase, Department
of Civil Engineering, University of Dayton]
Figure 4-4. Roughness Factor C_{HW} versus age for different diameters
Figure 4-5. Leakage restoration
Figure 4-6. Photograph of a ruptured pipe; arrow indicates rupture sites
Figure 4-7. Single corrosion pit at the outer surface of a pipe
Figure 4-8. Combined corrosion/structural failure of a pipe: (left) blown section; (right)
circumferential fracture
Figure 4-9. Failure for small diameter pipes. A) Bell splitting at the top of pipe,

created corrosion pitting at middle of pipe, elongated corrosion pitting with blow out hole
at bottom of pipe. Generally these failure modes not be seen on the same pipes
Figure 4-10. Failure modes for large diameter pipes. A) Longitudinal splitting. B) Bell
shearing. Corrosion pit failure modes are also common on these pipes
Figure 4-11. Combined degradation/structural failure of asbestos cement pipe
(longitudinal fracture)
Figure 4-12. Combined degradation/structural failure of asbestos cement pipe (complex
fracture)
Figure 4-13. Spiral failure mode in mid-diameter pipe . Corrosion pitting failures have
also been shown in these pipes
Figure 4-14. Pipe Failure Rates as a function of age (Neubeck, 2004)
Figure 4-15. An example set of failure rate curves from a statistical failure model for a
particular water authority (WSAA REPORT - PARMS 02/063). [AC: Asbestos Cement,
CI: Cast Iron, MS: Mild Steel, DICL: Ductile Iron Cement Lined]
Figure 4-16. Example failure probability plot for a pipe subjected to different corrosion
rates and loading conditions (De Silva et al., 2002)
Figure 5-1. Proposed Reliability Analysis Methodology
Figure 5-2. Population and water demand projections for the city of Abusweir
Figure 5-3. Pump into hydropneumatic tanks
Figure 5-4. Abusweir water distribution network
Figure 5-5. Simulated Overall Network Reliability of the Abusweir Network at Different
Times during its Lifetime for H _{th} =15, 20, 25 m
Figure 5-6. Simulated Pipe Pressure Distribution for Node #16 at Different Times during
the Lifetime of the Network
Figure 5-7. Simulated Minimum Pipe Pressure Distribution of the Abusweir Network at
Different Times during its Lifetime
Figure 5-8. Simulated Overall Network Reliability of Abusweir Network at Different
Times during its Lifetime
Figure 5-9. Pipes in the Abusweir network associated with modifications 1 and 2 91
Figure 5-10. Pipes in the Abusweir network associated with modification 3

Figure 5-11. Simulated Overall Network Reliability of the Three Proposed Modific	ations
to the Abusweir Network at the year 2040 for H _{th} =20m	93
Figure 5-12. Simulated Overall Network Reliability of the Three Proposed Modific	ations
to the Abusweir Network at Different Times during its Lifetime for H_{th} =20m	94
Figure A-1. Main Phases of an Optimization Process	99

List of Tables

Table 5-1. Projections for the City of Abusweir
Table 5-2. Pipeline's in the Abusweir Network. [The Hazen-Williams roughness factor
for the used pipes is C_{HW} =130 for year 2010]
Table 5-3. Input Parameters for the Statistical Simulation of the Abusweir Network 79
Table 5-4. Mean Nodal Demand Projections
Table 5-5. Simulated Mean Nodal Pressures during the Network Lifetime
Table 5-6. Simulated Standard Deviation of Nodal Pressures during the Lifetime of the
Network
Table 5-7. Simulated Percentage Standard Deviation to Mean Ratios of Nodal Pressures
83
Table 5-8. Simulated Nodal Reliability at Different Times during the Network Lifetime84
Table 5-9. Simulated Overall System Statistics at Different Times during the Network
Lifetime

CHAPTER 1. INTRODUCTION

1.1. General

Water Distribution Networks play a vital important role in preserving and providing a desirable life quality to the public. In the past that the much of the effort in the design of the water distribution networks emphasized on the aspect of least cost. The amount of effort and attention given to develop a procedure for system performance reliability evaluation has not attained a comparable scale.

Water utilities are concerned construct, operate, and maintain water supply systems. The basic objective of these water utilities is to obtain water from a source, treat the water to an acceptable quality, and deliver the desired quantity of water to the appropriate place at the required time.

The analysis of a water system is usually to evaluate one or more of the major functional components of the utility: source development; raw-water transmission: raw water storage, treatment, finished water storage; and finished water distribution. The water distribution network will be our main concern in this study for which we have applied the reliability measures.

1.2. Components of Water Distribution Networks

The purpose of a water distribution network is to supply the system's users with the required water demand such as fire demands at different nodes; peak daily demands; a series of patterns varying throughout a day; or a critical load when one or more pipes are broken, and to supply this water with adequate pressure under various loading conditions (pattern of nodal demands).

In order to insure that a design is adequate, a number of loading conditions including critical conditions must be considered. The ability to operate under a variety of load patterns is required to have a reliable network.

Distribution system infrastructure is generally considered to consist of the pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic

accessories that connect treatment plants or well supplies to consumers' taps, as shown in Figure 1-1. The characteristics, general maintenance requirements, and desirable features of the basic infrastructure components in a drinking water distribution system are briefly discussed below.

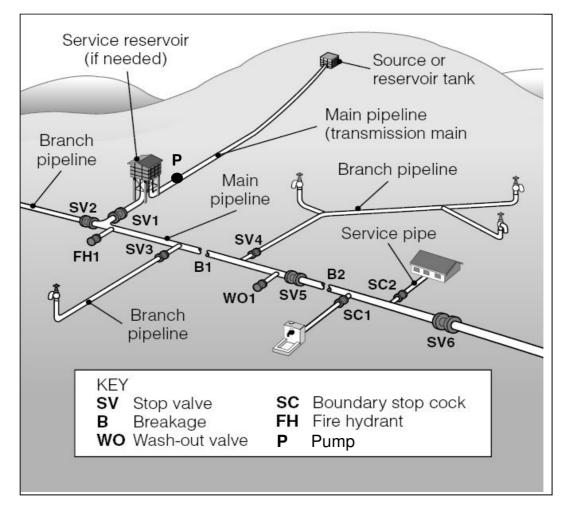


Figure 1-1. Water Distribution System

1.2.1. Pipes

The systems of pipes that transport water from the source (such as a treatment plant) to the customer are often categorized from largest to smallest as transmission or trunk mains, distribution mains, service lines, and premise plumbing. Transmission or trunk mains usually convey large amounts of water over long distance such as from a

treatment facility to a storage tank within the distribution system. Distribution mains are typically smaller in diameter than the transmission mains and generally follow the city streets. Service lines carry water from the distribution main to the building or property being served. Service lines can be of any size depending on how much water is required to serve a particular customer and are sized so that the utility's design pressure is maintained at the customer's property for the desired flows. Premise plumbing refers to the piping within a building or home that distributes water to the point of use. In premise plumbing the pipe diameters are usually comparatively small, leading to a greater surface-to-volume ratio than in other distribution system pipes.

The three requirements for a pipe include its ability to deliver the quantity of water required, to resist all external and internal forces acting upon it, and to be durable and have a long life (Clark and Tipper, 1990). The materials commonly used to accomplish these goals today are ductile iron, pre-stressed concrete, polyvinyl chloride (PVC), reinforced plastic, and steel. The material of the pipe is a major element for changing the reliability of a network.

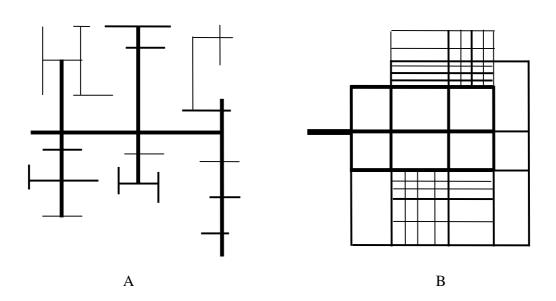


Figure 1-2. Two Basic Configurations for Water Distribution Systems
(A) Branched configuration (B) Looped configuration