دراسة على اختلاف الوراثة المناعية في الدجاج عاري الرقبة وطبيعي الترييش

رسالة مقدمة من

علي نظمي علي حسن على مس ، 2001 بكالوريوس علوم زراعية (إنتاج دواجن) ، جامعة عين شمس

للحصول على

درجة الماجستير في العلوم الزراعية (تربية دواجن)

> قسم إنتاج الدواجن كلية الزراعة – جامعة عين شمس

صفحة الموافقة على الرسالة

دراسة على اختلاف الوراثة المناعية في الدجاج عاري الرقبة وطبيعي الترييش

رسالة مقدمة من علي خسن علي خسن علي خسن بكالوريوس علوم زراعية (إنتاج دواجن) ، جامعة عين شمس ،2001

للحصول على درجة ماجستير في العلوم الزراعية (تربية دواجن)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة

•••••	أ. د. طریف عبدالعزیز شما
	أستاذ تربية الدواجن، كلية الزراعة, جامعة الأزهر
•••••	أ . د. علي زين الدين حسن فراج
	أستاذ تربية الدواجن، كلية الزراعة ، جامعة عين شمس
•••••	أ. د. أحمد حاتم إبراهيم العطار
	أستاذ تربية الدواجن ، كلية الزراعة ، جامعة عين شمس
•••••	أ . د. معتز محمد فتحي احمد
	أستاذ تربية الدواجن، كلية الزراعة ، جامعة عين شمس

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب : علي نظمي علي حسن

عنوان الرسالة: دراسة على اختلاف الوراثة المناعية في الدجاج عاري الرقبة وطبيعي

الترييش

اسم الدرجة : ماجستير في العلوم الزراعية (تربية دواجن)

لجنة الإشراف

أ. د. أحمد حاتم إبراهيم العطار

أستاذ تربية الدواجن ، قسم إنتاج الدواجن، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

أ. د. معتز محمد فتحى أحمد

أستاذ تربية الدواجن، قسم إنتاج الدواجن، كلية الزراعة ، جامعة عين شمس

د. أوسامة محمد على شوريب

أستاذ مساعد تربية الدواجن ، قسم إنتاج الدواجن، كلية الزراعة ، جامعة عين شمس

تاريخ البحث: 01 / 09 /2003

الدراسات العليسا

ختم الإجازة أجيزت الرسالة بتاريخ 2006 / 07 / 10

موافقة مجلس الكلية موافقة مجلس الجامعة / / 2006 / / 2006

CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	X
INTRODUCTION	1
REVIEW OF LITERATURE	2
1. Phenotypic parameters	2
1.1. Body weight and body weight gain	2
1.2. Body measurements	3
1.2.1. Keel length	3
1.2.2. Shank length	4
1.2.3. Body depth	4
1.3. Comb and wattle lengths	4
1.4. Feed intake	5
1.5. Feed efficiency	5
1.6. Carcass composition	6
1.7. Abdominal fat	8
1.8. Age at sexual maturity	9
1.9. Egg production parameters	9
1.10. Egg quality measurements	10
1.11. Blood parameters	11
2. Immune response measurements	11
2.1. Overview on immune system	11
2.2. Non-pathogenic methods	12
2.2.1. Cell-mediated immunity (CMI)	12
2.2.2. Antibody production	13
2.2.2.1. Total antibody response (Ab)	14
2.2.2.2. Immunoglobulin (IgG and IgM)	16
2.2.3. Phagocytic activity	17
2.2.4. Relative lymphoid organs weight	17
2.2.5. Heterophil: lymphocyte ratio	18
3. Relationship between productive traits and immune response	19

MATERIALS AND METHODS	21
1. parent stock	21
1.1. Measurements and observations for parent stock	23
1.1.1. body weight and body weight gain	23
1.1.2. Body measurements	23
1.1.3. Comb and wattle lengths	24
1.1.4. Feed consumption and feed conversion	24
1.1.5. Carcass dissection	24
1.1.6. Age at sexual maturity	25
1.1.7. Egg production measurements	25
1.1.8. Egg quality assessment	25
1.1.9. Strength of eggshell	26
2. Offspring flocks	26
2.1. Measurements and observations for offspring flock	27
2.1.1. Productive trait	27
2.1.1.1. Body weight and body weight gain	27
2.1.1.2. Body measurements	27
2.1.1.3. Comb and wattle lengths	27
2.1.1.4. Feed consumption and feed conversion	27
2.1.1.5. Carcass dissection	27
2.1.1.6. Age at sexual maturity	29
2.1.1.7. Egg production measurements	29
2.1.1.8. Egg quality assessment	29
2.1.1.9. Strength of eggshell	29
2.1.2. Immunocompetence measurements	29
2.1.2.1. Cell-mediated immunity assay	29
2.1.2.2. Relative lymphoid organs and some organs weight	30
2.1.2.3. Blood parameters	30
2.1.2.4. White blood cell differentiation	30
2.1.2.5. Antibody response against sheep red blood cells	30
2.1.2.6. Phagocytic system function assay	31
3. Gene effect	32

4. Statistical analysis	32
RESULTS AND DISCUSSION	33
1. parent stock	33
1.1. Body weight and body weight gain	33
1.2. comb and wattle lengths	34
1.3. Feed consumption and feed conversion ratio	38
1.4. Carcass measurements	41
1.4.1. Live body weight	41
1.4.2. Blood weight and percentage	41
1.4.3. Feather weight and percentage	41
1.4.4. Head weight and percentage	42
1.4.5. Leg weight and percentage	42
1.4.6. Inedible meat parts weight and percentage	42
1.4.7. Carcass weight and percentage	42
1.4.8. Liver weight and percentage	43
1.4.9. Gizzard weight and percentage	43
1.4.10. Heart weight and percentage	43
1.4.11. Giblets weight and percentage	43
1.4.12. Edible meat parts weight and percentage	44
1.4.13. Major pectoralis muscle (MJPM) weight and percentage	44
1.4.14. Minor pectoralis muscle (MIPM) weight and percentage	45
1.4.15. Breast muscles weight and percentage	45
1.4.16. Drumstick weight and percentage	45
1.4.17. Thigh weight and percentage	46
1.4.18. Leg weight and percentage	46
1.4.19. Skin weight and percentage	46
1.4.20. Wing weight and percentage	46
1.4.21. Femur weight and percentage	46
1.4.22. Tibia weigh	47
1.5. Abdominal fat weight and percentage	47
1.6. Testis weight and percentage	47
1.7. Lymphoid organs weight	47

1.7.1. Spleen weight and percentage	47
1.7.2. Thymus weight and percentage	48
1.7.3. Bursa weight and percentage	48
1.8. Maturation measurements	59
1.8.1. Body weight	59
1.8.2. Body measurements	59
1.8.3. Comb and wattle lengths	59
1.8.4. Age at sexual maturity	60
1.9. Egg production parameters	60
1.9.1. Egg Number	61
1.9.2. Egg weight	61
1.9.3. Egg Mass	61
1.10. Egg quality measurements	62
1.10.1. Egg weight	62
1.10.2. Internal egg quality	62
1.10.2.1. Yolk weight and percentage	62
1.10.2.2. Albumen weight and percentage	63
1.10.2.3. Yolk height and diameter	63
1.10.2.4. Albumen height	63
1.10.2.5. Haugh units	63
1.10.3. Eggshell quality	63
1.10.3.1. Eggshell weight and percentage	63
1.10.3.2. Shape index	64
1.10.3.3. Shell thickness	64
1.10.3.4. Breaking strength	64
2. Offspring stock	67
2.1. Productive parameters	67
2.1.1. Body weight and body weight gain	67
2.1.2. Comb and wattle lengths	68
2.1.3. Feed consumption and feed conversion ratio	69
2.1.4. Carcass measurements	77
2.1.4.1. Live body weight	77

2.1.4.2. Blood weight and percentage	77	
2.1.4.3. Feather weight and percentage		
2.1.4.4. Leg weight and percentage		
2.1.4.5. Head weight and percentage		
2.1.4.6. Inedible meat parts weight and percentage	78	
2.1.4.7. Carcass weight and percentage	79	
2.1.4.8. Liver weight and percentage	79	
2.1.4.9. Gizzard weight and percentage	79	
2.1.4.10. Heart weight and percentage	79	
2.1.4.11. Giblets weight and percentage	80	
2.1.4.12. Edible meat parts weight and percentage	80	
2.1.4.13. Major pectoralis muscle (MJPM) weight and		
percentage	80	
2.1.4.14. Minor pectoralis muscle (MIPM) weight and		
percentage	81	
2.1.4.15. Breast muscles weight percentage	81	
2.1.4.16. Drumstick weight and percentage	82	
2.1.4.17. Thigh weight and percentage	82	
2.1.5. Abdominal fat weight and percentage	82	
2.1.6. Testis weight and percentage	82	
2.1.7. Maturation measurements	83	
2.1.7.1. Body weight	83	
2.1.7.2. Body measurements	83	
2.1.7.3. Comb and wattle lengths	83	
2.1.7.4. Age at sexual maturity	83	
2.1.8. Egg production parameters	90	
2.1.8.1. Egg number	90	
2.1.8.2. Egg production rate	90	
2.1.8.3. Egg weight	90	
2.1.8.4. Egg mass	90	
2.1.9. Egg quality measurements	91	
2.1.9.1. Egg weight	91	

2.1.9.2. Internal egg quality	91
2.1.9.2.1. Yolk weight and percentage	91
2.1.9.2.2. Albumen weight and percentage	92
2.1.9.2.3. Yolk height and diameter	92
2.1.9.2.4. Albumen height	92
2.1.9.2.5. Haugh units	92
2.1.9.3. Eggshell quality	93
2.1.9.3.1. Eggshell weight and percentage	93
2.1.9.3.2. Shape index	93
2.1.9.3.3. Shell thickness	93
2.1.9.3.4. Breaking strength	93
2.2. Immune response parameters	97
2.2.1. Cell mediated immunity (PHA-P)	97
2.2.2. Relative lymphoid organs weight	100
2.2.3. Blood parameters and some organs	100
2.2.4. Phenotypic correlation coefficients	101
2.2.5. White blood cells differential count	103
2.2.7. Antibody response against sheep red blood cells (SRBCs)	107
2.2.7.1. Total antibody level	107
2.2.7.2. Immunoglobulin G (IgG) and Immunoglobulin M	
(IgM)	108
2.2.6. Phagocytic activity	111
SUMMARY AND CONCLUSION	112
REFERENCES	121
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Number of parent stock chicks for each sex within	2.1
	genotype	21
2	The composition and calculated chemical analysis	
	of the experimental diets	23
3	Number of offspring chicks for each sex within	
	genotype	26
4	Means ± SE of body weights of naked neck and	
	normally feathered genotypes at different ages	35
5	Means ± SE of body weight gain of naked neck	
	and normally feathered genotypes at different ages	36
6	Means \pm SE of comb and wattle lengths of naked	
	neck and normally feathered genotypes at different	
	ages	37
7	Means ± SE of body weight and body weight gain	
	of naked neck and normally feathered genotypes	39
8	Means ± SE of feed consumption and feed	
	conversion ratio of naked neck and normally	
	feathered genotypes	39
9	Body weight and inedible parts of naked neck and	
	normally feathered males at 16 wks of age	49
10	Means ± SE of edible parts of naked neck and	
	normally feathered males at 16 wks of age	50
11	Means \pm SE of breast, thigh and drumstick meat	
	of naked neck and normally feathered males at 16	
	wks of age	51
12	Means ± SE of lymphoid organs weight of naked	
	neck and normally feathered males at 16 wks of	
	age	58
13	Means ± SE of maturation measurements of naked	
-	neck and normally feathered genotypes	60

14	Means ± SE of egg production parameters (90 days) of naked neck and normally feathered	
	genotypes	62
15	Means ± SE of egg weight and internal egg	02
	quality of naked neck and normally feathered	
	genotypes	65
16	Means \pm SE of eggshell quality of naked neck and	
	normally feathered genotypes	66
17	Means \pm SE of body weight of naked neck and	
	normally feathered genotypes at different age	70
17	Continued	71
18	Means ± SE of body weight gain of naked neck	
	and normally feathered genotypes at different age	72
18	Continued	73
19	Means ± SE of comb and wattle lengths of naked	
	neck and normally feathered genotypes at different	
	age	74
19	Continued	75
20	Means ± SE of body weight, weight gain, feed	
	consumption and feed conversion as affected by	
	· · · · · · · · · · · · · · · · · · ·	
	Na gene, sex and their interaction	76
21	Na gene, sex and their interaction Means \pm SE of live body weight and inedible parts	76
21		76 84
21 22	Means \pm SE of live body weight and inedible parts	
	Means \pm SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes	
	Means \pm SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means \pm SE of edible parts weight of NaNa, Nana,	84
22	Means \pm SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means \pm SE of edible parts weight of NaNa, Nana, nana genotypes	84
22	Means ± SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means ± SE of edible parts weight of NaNa, Nana, nana genotypes Means ± SE of breast, drumstick and thigh	84
22	Means ± SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means ± SE of edible parts weight of NaNa, Nana, nana genotypes Means ± SE of breast, drumstick and thigh muscles weight of NaNa, Nana and nana	84 85
22 23	Means \pm SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means \pm SE of edible parts weight of NaNa, Nana, nana genotypes Means \pm SE of breast, drumstick and thigh muscles weight of NaNa, Nana and nana genotypes	84 85
22 23	Means \pm SE of live body weight and inedible parts weight of NaNa, Nana, nana genotypes Means \pm SE of edible parts weight of NaNa, Nana, nana genotypes Means \pm SE of breast, drumstick and thigh muscles weight of NaNa, Nana and nana genotypes Means \pm SE of traits measured at sexual maturity	84 85

	naked neck (NaNa and Nana) and normally	
	feathered (nana) genotypes (offspring)	94
26	Means \pm SE of egg weight and internal egg quality	
	for naked neck (NaNa and Nana) and normally	
	feathered (nana) genotypes (offspring)	95
27	Means ± SE of eggshell quality for naked neck	
	(NaNa and Nana) and normally feathered (nana)	
	genotypes (offspring)	96
28	Means \pm SE of PHA-P mediated swelling response	
	in toe-webs as affected by Na gene, sex and their	
	interaction at 7 weeks of age	98
29	Means \pm SE of body weight and relative lymphoid	
	organs for naked neck and normally feathered	
	genotypes at 7 weeks of age	104
30	Means \pm SE of blood parameters and some organs	
	weight of naked neck and normally feathered	
	males at 7 weeks of age	105
31	Phenotypic correlation coefficients among body	
	weight, relative lymphoid organs weight and toe-	
	web swelling of NaNa, Nana and nana genotypes	106
32	Means ± SE of white blood cells differential	
	counts of NaNa, Nana and nana genotypes at 7	
	weeks of age	107
33	Means ± SE of total antibody production (Ab),	
	immunoglobulin G (IgG) and Immunoglobulin M	
	(IgM) level of NaNa, Nana and nana genotypes.	110
34	Means ± SE of carbon clearance for naked neck	
	and normally feathered male at 16 weeks of age	111

LIST OF FIGURES

Figure		Page
1	Maximum and minimum ambient temperatures	
	recorded during experimental period (parent	
	stock)	22
2	Maximum and minimum ambient temperatures	
	recorded during experimental period (offspring	
	flock)	28
3	Absolute and relative skin weight of naked	
	neck and normally feathered genotypes	52
4	Absolute and relative wing weight of naked	
	neck and normally feathered genotypes	53
5	Absolute and relative femur weight of naked	
	neck and normally feathered genotypes	54
6	Tibia weight of naked neck and normally	
	feathered genotypes	55
7	Absolute and relative abdominal fat weight of	
	naked neck and normally feathered genotypes	
	(parent)	56
8	Absolute and relative tests weight of naked	
	neck and normally feathered genotypes (parent)	57
9	Absolute and relative weight abdominal fat for	
	NaNa, Nana and nana genotypes (offspring)	87
10	Absolute and relative weight of testes for	
	NaNa, Nana and nana genotypes (offspring)	88
11	Effect of naked neck gene and sex on two web	
	swelling	99

INTRODUCTION

Poultry industry in developing countries is facing many challenges. Diseases, unfavorable circumstances and bad management are major factors resulting in economic loss in broiler and layer sectors. Diseases play major role in the poultry industry because they lead to losses in commercial production. A hot environment is one of the important stressors in poultry production. The resultant heat stress comes from the interaction among air temperature, humidity, radiant heat and air speed, where the air temperature plays the major role. Nutritional strategies aimed to alleviate the negative effects of heat stress by maintaining feed intake, electrolytic and water balance or by supplementing micronutrients such as vitamins and minerals to satisfy the special needs during heat stress have been proven advantageous. They increase management costs, lead to production losses and raise humans concerns. Fortunately, there are major genes such as naked neck (Na), frizzle (F) and dwarf (dw), which play an important role in alleviating heat stress. The naked neck (Na) gene reduces feather mass by about 20 and 40% in heterozygous (Nana) and homozygous (NaNa) birds, respectively compared with fully feathered counterparts. The Na allele can increase breast meat production especially at high ambient temperatures. The lower feather mass increase the effective surface of heat dissipation and increase the sensible heat loss from the neck. Also, the naked neck gene should be considered for industrial broiler production in hot climates. The major genes are believed to confer not only adaptability to the tropical climate, but also resistance to diseases.

Reports on the influence of major genes, such as naked neck gene, on immunocompetence of chicken are few. From such view, this study was designed to evaluate the effect of naked neck (Na) gene in a single or double state on productive performance and immunocompetence measurements of chickens under prevailing conditions of Egypt.

REVIEW OF LITERATURE

1. Phenotypic characters

1.1. Body weight and body weight gain

During the spring and summer seasons, **Cahaner** *et al.* (1992) observed that Nana broilers had heavier body weight gain by about 3% compared to normally feathered siblings. Also, this advantage is almost tripled at a constant high temperature of about 32°C.

From 8 to 12 weeks of age, **Darwish** *et al.* (1992) reported that the body weight of homozygous naked neck (NaNa) genotype was significantly heavier than those of both heterozygous (Nana) and homozygous recessive (nana) genotypes.

Under summer season of Egypt, the naked neck birds (NaNa and Nana) had heavier body weights than that of normally-feathered ones (nana) in both sexes from 4 to 16 weeks of age (**Fathi, 1992**).

Cahaner *et al.* (1993) found that fast-growing naked neck broilers are advantageous over their normally feathered sibs at a constant ambient temperatures ranged from 24 to 32°C.

Deeb and Cahaner (1996) stated that the advantage of the naked neck birds appears at high ambient temperature for growth rate.

Singh *et al.* (1996 & 1998) studied the effect of the naked neck allele on the growth, feed efficiency and livability of two broiler strains (white and colored plumage) from hatching to 6 weeks of age under fluctuating temperatures in both winter and summer seasons, they reported that, the naked neck genotype in both strains was less reduction in growth rate, better feed efficiency and improved livability, especially under summer season. At moderate ambient temperature (20°C), **Hussein** *et al.*(2000) concluded that the body weights at 36 and 40 weeks of age for naked neck females were significantly lighter than that of normally feathered counterparts.

Under low ambient temperature, during winter season of Egypt, Galal et al. (2000) found that the body weight at sexual maturity of