

USING OF ALGAE AND SEAWEEDS IN THE DIETS OF MARINE FISH LARVAE

A Thesis

Presented to the Graduate School
Faculty of Agriculture, Saba Basha, Alexandria University
In Partial Fulfillment of the
Requirements for the Degree

of

MASTER IN AGRICULTURAL SCIENCES

In (FISH PRODUCTION)

By

ESLAM MOHAMMED MOHAMMED ELMORSHEDY

April, Y.V.

USING OF ALGAE AND SEAWEEDS IN THE DIETS OF MARINE FISH LARVAE

Presented by

ESLAM MOHAMMED MOHAMMED ELMORSHEDY

For the Degree of MASTER IN AGRICULTURAL SCIENCES

In Fish Production

Examiners' Committee:	Approved
Prof. Dr. Abd el-Hamid Mouhamed Abd el-Hamid	•••••
Prof. of Animal Nutrition	
Fac. Of Agric. El mansoura University	
Prof. Dr. Zinab atia atia nagdy	•••••
Prof. of Limnology	
Central Laboratory for Aquaculture Research Abbasa	
Prof. Dr. Mohamed elsyed Salama	•••••
Prof. of Fish Production	
Faculty of Agriculture (Saba-Basha)	
Alexandria University	
Prof. Dr. Alaa. A. El-Dahhar	•••••
Prof. of Fish Nutrition	
Faculty of Agriculture (Saba-Basha)	
Alexandria University	

ADVISOR'S COMMITTEE:

Prof. Dr. Mohamed elsyed Salama	•••••
Prof. of Fish Production	
Faculty of Agriculture (Saba-Basha)	
Alexandria University	
Prof. Dr. Alaa A. El-Dahhar	•••••
Prof. of Fish Nutrition	
Faculty of Agriculture (Saba-Basha)	
Alexandria University	
Dr. Yasser Thabet Abdel-Megeid Mostafa	• • • • • • • • • • • • • • • • • • • •
Researcher at Limnology Department	
Central Laboratory for Aquaculture Research A	bbasa

لجنة الإشراف:

	الأستاذ الدكتور / محمد السيد احمد سلامة
	أستاذ إنتاج الاسماك كلية الزراعة—سابا باشا—جامعة الأسكندرية
••••••	الأستاذ الدكتور / علاء عبد الكريم الدحار
	أستاذ تغذية الأسماك كلية الزراعة—سابا باشا—جامعة الأسكندرية
	الدكتور / ياسر ثابت عبد المجيد
(الشرقية)	باحث بقسم الليمنولوجي المعمل المركزي لبحوث الثروة السمكية بالعباسة

أستخدام الطحالب والاعشاب البحرية في أعلاف يرقات الاسماك البحرية

مقدمة من إسلام محمد محمد المرشدي

للحصول على درجة الماجستير في العلوم الزراعية تخصص (إنتاج الأسماك)

<u>موافقون</u>	لجنه المناقشه والحكم على الرساله:
•••••	الأستاذ الدكتور / عبد الحميد محمد عبد الحميد
	أستاذ تغذية الحيوان
	كلية الزراعة- جامعة المنصورة
	الأستاذ الدكتور / زينب عطية عطية نجدي
	أستاذ الليمنولوجي
	المعمل المركزي لبحوث الثروة السمكية بالعباسة (الشرقية)
	الأستاذ الدكتور / محمد السيد احمد سلامة
	أستاذ إنتاج الأسماك
	كلية الزراعة- سابا باشا-جامعة الأسكندرية
•••••	الأستاذ الدكتور / علاء عبد الكريم الدحار
	أستاذ تغذية الأسماك
	كارة الزياعة - سارا باشا - حامعة الأسكنديية

أستخدام الطحالب والاعشاب البحرية في أعلاف يرقات الاسماك البحرية

رسالة علمية

مقدمة إلى الدراسات العليا

بكلية الزراعة-سابا باشا-جامعة الإسكندرية

استيفاء للدراسات المقررة للحصول على درجة

الماجستير في العلوم الزراعية

في إنتاج الأسماك

مقدمة من إسلام محمد محمد المرشدي

ابریل ۲۰۱۰

CONTENTS

	Page No:
INTRODUCTION	1
REVIEW OF LITERATURES	ŧ
Mullet Acclimatization	ŧ
Y) Feeding habits of mullet	٥
") Nutritional requirement	٨
۳ - ۱) Amino acids	١.
^r - ^γ) Fatty acids	17
(a) Micro algae	1 £
٤ - ١) Nutritional properties of micro algae	1 £
۶ – ۲) <i>Nannochloropsis</i> production	1 V
°) Macro algae "Ulva spp"	١٨
MATERIALS AND METHODS	70
\'-Collection and Prepartion of seaweeds	70
Y-Production of marine algae	70
Υ-Sea water supply system	77
The seawater supply Facilities	44
۳,۲-Sedimentation, Storage and Aseptic Facilities	77
٤- (Nannochloropsis oculata) PRODUCTION	77
٤,١-Culture procedure	77
٤,١,١-Culture procedure (in door)	77
٤,١,٢-Culture procedure (out door)	4 9
°-The method of drying algae	٣١
7-Experimental procedure	٣٢
V-Diets formulation and preparation	**
^-The Experimental Design	70
A, \-The first Experiment	70
A, Y-The Second Experiment	٣٦
۸٫۳-The Third Experiment	٣٦
9-Body Composition Analysis	**
RESULTES	٣٨
DISCUSSION	٧١
SUMMARY	٧٧
REFERENCES	٨٠
ARABIC SUMMARY	1

LIST OF FIGURES

	Page No:
(Figure '): indoor culture	**
(Figure): Intermediate and mass culture	٣.
Figure (*): Means of final body weight (g/fish) of grey mullet fry fed the five diets	٤١
in the first experiment	
Figure (4): Means of average daily gain ADG (g/fish/day) of grey mullet fry fed the five diets in the first experiment	٤١
Figure (°): Means of specific growth rate SGR of grey mullet fry fed the five diets	٤٢
in the first experiment	
Figure (%): Means of survival rate % of grey mullet fry fed the five diets	٤ ٢
in the first experiment	
Figure (V): Means of weight gain (g/fish) of grey mullet fry fed the five diets	٤٣
in the first experiment	
Figure (^): Means of offered feed (g/fish) of grey mullet fry fed the five diets	٤ ٣
in the first experiment	
Figure (4): Means of feed conversion ratio FCR of grey mullet fry fed the five diets	٤٣
in the first experiment	
Figure (' ·): Means of moisture % in the carcass of grey mullet fry fed	٤٧
the five diets in the first experiment	
Figure (\\'): Means of protein \% in the carcass of grey mullet fry fed	٤٧
the five diets in the first experiment	
Figure (\ \ \): Means of lipid % in the carcass of grey mullet fry fed	٤٧
the five diets in the first experiment.	
Figure () * Means of protein efficiency ratio PER of grey mullet fry fed the five diets	٤٨
in the first experiment	
Figure (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٤٨
in the first experiment	
Figure (1°): Means of energy retention ER% of grey mullet fry fed the five diets	٤٨
in the first experiment Figure (17): Means of final body weight (g/fish) of grey mullet fry fed the five diets	٥٢
in the second experiment	• ,
Figure (\ \ \ \ \ \ \): Means of average daily gain ADG (g/fish/day) of grey mullet fry fed the five	۲٥
diets in the second experiment	
Figure (\\^): Means of specific growth rate SGR of grey mullet fry fed the five diets	۳٥
in the second experiment	
Figure (19): Means of survival rate % of grey mullet fry fed the five diets	٥٣
in the second experiment	
Figure (* ·): Means of weight gain (g/fish) of grey mullet fry fed the five diets	٥٤
in the second experiment	
Figure (⁷): Means of offered feed (g/fish) of grey mullet fry fed the five diets	٤٥
in the second experiment	
Figure (' '): Means of feed conversion ratio FCR of grey mullet fry fed the five diets	٤٥
in the second experiment	

Figure (TT): of moisture % in the carcass of grey mullet fry fed the five diets	٥٨
in the second experiment	
Figure (٥٨
in the second experiment	
Figure (): Means of lipid % in the carcass of grey mullet fry fed the five diets	٥٨
in the second experiment.	
Figure (٢٦): Means of protein efficiency ratio PER of grey mullet fry fed the five diets	٥٩
in the second experiment	
Figure (YV): Means of protein productive value PPV% of grey mullet fry fed the five diets	٥٩
in the second experiment	
Figure (۲ A): Means of energy retention ER% of grey mullet fry fed the five diets	٥٩
in the second experiment	
Figure (^۲ ⁹): Means of final body weight (g/fish) of striped mullet fry fed the five diets	7 7
in the third experiment	
Figure (**): Means of average daily gain ADG (g/fish/day) of striped mullet fry fed the	٦٣
five diets in the third experiment	
Figure (* 1): Means of specific growth rate SGR of striped mullet fry fed the five diets	٦٤
in the third experiment	
Figure (* Y): Means of survival rate % of striped mullet fry fed the five diets	٦٤
in the third experiment	
Figure (""): Means of weight gain (g/fish) of striped mullet fry fed the five diets	70
in the third experiment	
Figure (* 4): Means of offered feed (g/fish) of striped mullet fry fed the five diets	70
in the third experiment	
Figure (* o): Means of feed conversion ratio FCR of striped mullet fry fed the five diets	70
in the third experiment	
Figure (٣٦): Means of moisture % in the carcass of striped mullet fry fed the five diets	٦ ٩
in the third experiment	
Figure (YV): Means of protein % in the carcass of striped mullet fry fed the five diets	٦ ٩
in the third experiment	
Figure (*\(^\text{N}\): Means of lipid % in the carcass of striped mullet fry fed the five diets	٦ ٩
in the third experiment.	
Figure (* 4): Means of protein efficiency ratio PER of striped mullet fry fed the five diets	٧.
in the third experiment	
Figure (4 ·): Means of protein productive value PPV% of striped mullet fry fed the five	٧.
diets in the third experiment	
Figure (1): Means of energy retention ER% of striped mullet fry fed the five diets in the	٧.
third experiment	

LIST OF TABLES

	Page No:
Table ('). Indoor algae nutrient stock solutions (modified by Allen and Nelson, 191.).	47
Table (Y). Trace metal mixture (modified from Liu and Kelley, Y).	47
Table (*). Agricultural grade nutrients used for outdoor culture	4 4
Table (4). generalized set of condition for culturing micro-algae	٣1
(modified from Anonymous, 1991).	
Table (a). Composition and chemical analysis % as it is of the five feeding mixtures used	٣٣
in the first experiment.	
Table (1). Composition and chemical analysis % as it is of the nine feeding mixtures used	٣ ٤
in the second and third experiments.	
Table (V). Means ± SE of final body weight (g/fish), average daily gain (ADG, g/fish/day),	٤.
specific growth rate (SGR, %/day) and survival rate % of grey mullet fry	
(•,•95 g initial BW) fed the five dietary seaweeds (SW) inclusion levels	
(•, ٧, ١٤, ٢١ and ٢٨٪) of the control diet in the first experiment.	
Table ($^{\wedge}$). Means \pm SE of weight gain (g/fish), offered feed (g/fish) and	٤.
feed conversion ratio (FCR) of grey mullet fry fed the five dietary	
seaweeds (SW) inclusion levels (*, ٧, ١٤, ٢١ and ٢٨%) of the control diet	
in the first experiment.	
Table (4). Means ± SE of moisture (%), protein (%) and lipid content (%)	٤٦
in the carcass of grey mullet fry fed the five dietary seaweeds (SW) inclusion	
levels (*, Y, Y, Y) and YA%) of the control diet in the first experiment (fresh	
weight basics).	
Table ().). Means ± SE of protein efficiency ratio (PER), energy retention (ER %)	٤٦
and protein productive value (PPV%) of grey mullet fry fed the five	
dietary seaweeds (SW) inclusion levels (*, Y, Y, M, and YA%) of the control diet	
in the first experiment.	
Table (11). Means ± SE of final body weight (g/fish), average daily gain (ADG, g/fish/day),	٥١
specific growth rate (SGR, %/day) and survival rate % of grey mullet fry (•, ١٥٣g	
initial BW) fed the five dietary algae (AL) inclusion levels (*, *, *, *, *) and **.)	
of the diet in the second experiment.	
Table ($\$). Means \pm SE of weight gain (g/fish), offered feed (g/fish) and	٥١
feed conversion ratio (FCR) of grey mullet fry fed the five dietary algae (AL)	
inclusion levels $(\cdot, \lor, \lor, \lor \xi, \lor)$ and $\lor \land \lor$ of the diet in the second experiment.	
Table () * (). Means ± SE of moisture (%), protein (%) and lipid content (%)	٥٧
in the carcass of grey mullet fry fed the five dietary algae (AL) inclusion levels	
$(\cdot, \vee, \vee \xi, \vee \lambda)$ and $\vee \lambda \wedge \lambda$ of the diet in the second experiment.	
Table (1). Means \pm SE of protein efficiency ratio (PER), energy retention	٥٧
(ER%) and protein productive value (PPV%) of grey mullet fry fed the	
five dietary algae (AL) inclusion levels (*, \ \ \\ and \\\) of the diet	
in the second experiment.	
Table (1°). Means ± SE of final body weight (g/fish), average daily gain (ADG, g/fish/day),	7 7
specific growth rate (SGR, %/day) and survival rate % of striped mullet fry	
(*,) o y g initial BW) fed the five dietary equal mixture of seaweeds and marine	
algae (MX) inclusion levels (*, ٢١, ٢٨, ٣٥ and ٤٢%) of the diet in the third	
experiment.	

Table (17). Means ± SE of weight gain (g/fish), offered feed (g/fish) and	٦,
feed conversion ratio (FCR) of striped mullet fry fed the five dietary equal	
mixture of seaweeds and marine algae (MX) inclusion levels (, Y, Y, Y) and	
ፕላ٪) of the diet in the third experiment.	
Table (\forall V). Means \pm SE of moisture (%), protein (%) and lipid content (%)	٦/
in the carcass of striped mullet fry fed the five dietary equal mixture of	
seaweeds and marine algae (MX) inclusion levels (,, Y), YA, To and £Y%)	
of the diet in the third experiment.	
Table (\ \ \ \). Means \(\pm \) SE of protein efficiency ratio (PER), energy retention (ER \ \%)	٦/
and protein productive value (PPV %) of striped mullet fry fed the five dietary	
equal mixture of seaweeds and marine algae (MX) inclusion levels (*, ۲۱, ۲۸, ۳٥	
and ٤٧%) of the diet in the third experiment.	
Table (\ \ \ \ \). The total cost of chemicals to produce \ \ m^r \ of Algae.	٧,
Table (7.). The total cost of 'kg from the five feeding mixtures used in the second	٧-
experiment.	

ACKNOWLEDGEMENT

Thankfulness and gratefulness the God who support me in the hard times during the whole work.

The author wishes to express appreciation and sincere graduate to **Prof. Dr. Mohammed El-Sayed Salama**, Prof. of Fish Production guidance, for his valuble scientific advice and encouragement.

The author would like to thank **Prof. Dr. Alaa Abdel-Kereim El-Dahhar**, Prof. of Fish Nutrition, for proposing the design of the study, suggesting the problem, his guidance, scientific advice and continuous encouragement through the work.


Many thanks are extended to **Dr. Yasser Thabet Mustafa**, Dr. of Limnology Department, Central Laboratory for Aquaculture Research, Abbasa for his valuable scientific advice.

I wish to express my indebtedness and grateful thanks to **Prof. Dr. Zinab Atia Atia Nagdy,** Prof. of Limnology, Central Laboratory for Aquaculture Research, Abbasa for her valuable scientific advice. Thanks are also to all the staff members of Central Laboratory for Aquaculture Research, Abbasa.

I am gratitude for all the staff members of Animal and Fish Production Department, Faculty of Agriculture (Saba-Basha), Alexandria University, for their kind assistance.

Finally, I particularly express my special thank for all of my family members, mother, father and my brothers for their continuous encouragement, moral support and helping me in the hard time to complete my M.Sc. studies.

ARABIC SUMMARY

REFERENCES