Role of Spinal Instrumentation in Management of Spondylodiscitis

Thesis

Submitted for partial fulfillment of master degree in neurosurgery

Presented by

Ahmed Adel Abd-Ellatif Farag

M.B, B.CH

Under supervision of

Prof. Dr. Essam El-Din Abdelrhman Emara

Professor of neurosurgery Faculty of medicine, Ain shams university

Prof. Dr. Amr Mohamed Nageeb El-Shehaby

Assist. Prof. of neurosurgery Faculty of medicine, Ain shams university

Dr. Ahmad Elsayed Desoukey

Lecturer of neurosurgery Faculty of medicine, Ain shams university

Faculty of medicine Ain shams university 2012

CONTENTS

	Page
* Introduction	1
❖ Aim of the work	7
* Review of literature	
o Anatomy	8
 Pathology 	35
 Complication 	56
 Clinical picture 	64
 Diagnosis 	68
 Treatment 	99
❖ Patient and methods	126
❖ Results and statistics	135
❖ Illustrative cases	158
Discussion	165
❖ Summary and Conclusion	203
* References	206
❖ Arabic summary	

LIST OF ABBREVIATIONS

CRP	C-Reactive Protein
CT	Computerized Tomography
ELISA	Enzyme Linked Immunosorbant Assay
ESR	Erythrocyte Sedimentation Rate
FDG-PET	Fluorodeoxyglucose Positron Emission Tomography
Ga-67	Gallium-67
IV	Intravenous
IM	Intramuscular
MDP	Methylene Diphosphonate
MRI	Magnetic Resonance Imaging
PEEK	polyetheretherketone
PCR	Polymerase Chain Reaction
q12h	every 12 hours
q6h	every 6 hours
SPECT	Single Photon Emission Computed Tomography
ТВ	Tuberculosis
Tc-99	Tecnetium-99
TLIF	Transforaminal Lumbar Interbody Fusion
VB	Vertebral Body

LIST OF TABLES

Table		Page
1	Some suggested regimens according to causative organism; All regimens assume lack of allergy or other contraindications to the recommended agents. Dosages given are for adults with normal renal function	102
2	Risk factors & associated illness	136
3	Clinical pictures of spondylodiscitis in the studied group	138
4	Distribution and number of affected level in our series	139
5	Indications for surgery	137
6	Summary of the clinical and laboratory outcomes	150
7	Significant differences between the posterior approach only group and the other approaches group	157
8	Summary of complications published in recent studies	192

LIST OF FIGURES

Figure		Page
1	Mummies with kyphosis and psoas abcess	5
2	A picture of wooden statue of a man with hunch back deformity, sharp angulation of spine suggest TB (Egyptian Museum)	5
3	Inscription detailing ancient Egyptian medical instruments	6
4	Typical lumbar vertebra; (A) superior view (B) lateral view	9
5	Ligaments of the vertebrae	10
6	Cross section of muscle of the back	14
7	Compact Bone, Ground stain, 20x	15
8	Osteon of mature bone viewed under a polarized microscope	16
9	Trabecular bone and the surrounding hematopoietic cells, as well as adipose tissue in medullary cavity	17
10	Trabecular bone	17
11	Active osteoblasts depositing osteoid on the surface of a woven bone trabecula	18
12	Osteoclast in a cytologic preparation (Papanicolaou stain)	20
13	Woven bone under a polarized microscope	21
14	Intervertebral Disk; Nucleus & annulus	22
15	Intervertebral Disk, H&E, 2.5x	24
16	Intervertebral Disk, H&E, 40x	26
17	The range of variation in the termination of the spinal cord in the adult	30
18	The membranes of the spinal cord	32
19	Lateral X-ray of cervical spine at 6 weeks after first surgery shows erosion and irregularity of C4 and C5 end plates apart from segmental kyphosis and loosening of screws	42

Figure		Page
	Sagittal T-2 weighted MRI image showing	
20	high signal at C4–5 disc space and anteriorly	42
	located epidural abscess	
21	MRI of atypical form of T.B	48
22	MRI of Brucellar spondylodiscitis	50
23	MRI of the dorsal spine showing multiple osteolytic lesions of the vertebral bodies	52
24	Hydatid cyst of the spine	52
25	Relationship of the abscess to the meninges	54
26	20 yrs old female with dorsal spine TB (D8-D9)	58
27	Sagittal T1 MRI of 30yrs old male with upper dorsal TB showing Compression fracture and kyphosis	59
28	MRI of cervical and upper dorsal spine showing destruction of cervical & thoracic with epidural abscess along with retropharyngeal abscess	60
29	CT slice centered on T6, Pleural abscess on the right side	60
30	CT-guided needle biopsy	72
31	plain x-ray (lateral view) of 37yrs old male with postoperative L4-L5 spondylodiscitis	78
32	CT lumbar spine axial cut showing fragmentation of end plate due to infection	78
33	L5-S1 spondylodiscitis	80
34	Prevertebral enhancement	81
35	Type 1 Modic changes	81
36	Tuberculous spondylitis in a 44-year-old woman	83
37	Brucellar spondylitis in a 61-year-old man	84
38	Aspergillus-induced spondylitis	86
39	intramedullary spinal cord abscess	89
40	MRI of spinal metastasis	90
41	MRI showing postoperative changes	90
42	Male, 28 years of age with TB spondylodiscitis at L3- L4. Tecnetium-99 total body bone scintigraphy	93

Figure		Page
43	22yrs old female with dorsal 7-9 TB spondylodiscitis	105
44	plain x-ray anterio-posterior view show Titanium mesh Cage and anterior plate for reconstruction of L3	106
45	Plain x-ray shows expandable cage between	108
46	A.T1WI with contrast T10-11 TB spondylodiscitis B. Postoperative lateral plain x-ray (obtained after posterior decompression, stabilization, and placement of cage through posterior lateral extracavitary approach)	112
47	A. post contrast T1WI showing post operative L4-5 spondylodiscitis B. plain x-rays after TLIF and Posterior Instrumentation	113
48	Plain x-ray shows Transpedicular screw fixation	115
49	Sex distribution among the studied group	131
50	Percent distribution of number of affected levels among the studied group	134
51	Percent distribution of causative organisms among the studied group	135
52	Percent distribution of sources of infection and microbiological types among the studied group	136
53	Percent distribution of surgical approachs among the studied group	138
54	Percent distribution of the used instruments among the studied group	139
55	Percent distribution of complications among the studied group	140
56	The mean values of laboratory markers preoperative and at the end of follow up	141
57	The mean values of WBCS count preoperative and at the end of follow up	141
58	Comparison between grades of Frankel scale preoperative and at the end of follow up	143
59	Comparison between the mean value of VAS scores preoperative and at the end of follow up	143

Figure		Page
60	Comparison between the mean value of Barthel index preoperative and at the end of follow up	144
61	Comparison between between the postoperative and spontaneous group in the mean values of CRP in the end of follow up period	146
62	Comparison between between the postoperative and spontaneous group as regard complications	146
63	Comparison between the Granulomatous and Pyogenic group in the mean values of VAS in the end of follow up period	147
64	Comparison between /lumbosacral and Thoracic/cervical group in the mean values hospital stay & CRP in the end of follow up period	148
65	Comparison between lumbar/lumbosacral and Thoracic/cervical group as regard frankle scale preoperative & in the end of follow up period	148
66	Comparison between Refractoiness to medication/severe pain groupas an indication for surgery and the others indications group in the mean days of hospital stay	149
67	Comparison between between the posterior approach only group and the other approaches group as regard the mean values of blood loss & operative time	150
68	Summary of incidence of complications in recent studies	186
69	Comparison between conservative fusion surgery and the instrumentation surgery	187

Acknowledgment

First and foremost, thanks to God, the most beneficent and most merciful.

I would like to express my deepest gratitude to Professor **Dr. Essam El-Din Abdelrahman Emara**, Professor of Neurosurgery – Ain Shams University, who gave me all his generous support to help me to accomplish this work.

Many thanks to Assistant Professor **Dr. Amr**Mohamed Nageeb El-Shehaby, Assist. Prof. of

Neurosurgery - Ain Shams University whose

appreciated efforts made this work more valuable.

I would also like to thank **Dr. Ahmad Elsayed Desoukey**, Lecturer of Neurosurgery- Ain Shams
University, for supervising this work and giving me
his very valuable support.

Finally I express my deepest gratitude to my parents, my wife and my daughter who have stood by me and supported me throughout my life and career and especially during this work.

Ahmed Adel

Aim of the work

- Reviewing the literatures regarding:
 - ✓ Definition of spondylodiscitis.
 - ✓ Clinical aspects of spondylodiscitis.
 - ✓ Diagnosis of spondylodiscitis.
 - ✓ Different modalities of management of spondylodiscitis.
- Evaluation of safety and effectiveness of instrumentation in the surgical management of spondylodiscitis regarding clinical and radiological outcome.

INTRODUCTION

Spondylitis is osteomyelitis of the spinal column. This is defined as infection accompanied by destruction of vertebral bodies, starting at the endplates, but with secondary involvement of intervertebral discs. The term "spondylodiscitis" means primary infection of intervertebral disc by a pathogen, with secondary infection of neighboring vertebral bodies (*Cramer et al.*, 2003).

Spondylodiscitis is rare, but there is increase in number of patients which become a global health concern. It is currently due to reactivation of latent infections, more drug resistant agents and more immunocompromised patients. It has been shown that delay in diagnosis can lead to increased morbidity and mortality; early diagnosis and treatment are therefore of paramount importance (*Ozalay et al.*, *2010*).

The majority of patients with spondylodiscitis can be treated successfully with conservative management. Pharmacological treatment can terminate the infection but may not prevent a crippling deformity that could lead to perpetual pain (*Lim et al.*, 2008).

The indications for surgery include one or a combination of the following pathological changes: severe destruction of endplates, abscess formation, chronic osteomyelitis with biomechanical instability, neurologic deficit, local kyphosis, severe pain, septic pseudarthrosis or refractoriness to conservative treatment (*Lim et al.*, 2008).

There is a broad range of options for the surgical management of spinal infections, which include anterior or posterior approach, single-stage or two-stage surgery, with or without instrumentation. The role of spinal instrumentation in the presence of active infection is still controversial (*Lim et al.*, 2008).

Several authors have suggested bed rest and prolonged external bracing rather than placing spinal instrumentation (*Asamoto et al.*, 2005).

Others have advocated a staged instrumented operation with a period of antibiotics therapy after debridement only surgery (*Ozalay et al.*, 2010).

Numerous reports have demonstrated that stainless steel and titanium have different biocompatibility characteristics which consequently could influence bacterial or cell adhesion and colonization. However, the results were inconsistent. Some in vivo or in vitro researches implicated that stainless steel was more likely to be colonized by microbes, but contradictory results could also be found in other literature (*Haky et al.*, 2005).

But it was not until the 1990s of the last century, internal fixation started gaining some acceptance in reconstructive surgery performed in the setting of active infection, and more and more surgeons reported their series of surgical treatment of spinal infections with excellent results (*Christodoulou et al.*, 2006).

HISTORICAL PERSPECTIVE

The ancient Egyptians have been the earliest people suffering from spondylodiscitis, especially tuberculous type. The earliest mummy found with spinal TB is actually a predynastic female from Esna. **Figure** (1)

There is evidence from other mummies and statues with changes consistent with tuberculosis described in human skeletons dating back to the Iron Age; which means that infection of the spine is an ancient disease (*Tayles et al.*, 2004). Figure (2)

According to *Dimar et al.*, (2004) Hippocrates was the first to describe osteomyelitis of the spine in 400 BC. The first account of pyogenic vertebral osteomyelitis is credited to the French physician Lannelongue in 1879. The first large series of pyogenic vertebral infections in the English literature was published by Kulowski in 1936. Improvements in surgical and radiological techniques and the discovery of antimicrobial therapy have transformed the outlook for patients with this condition, but morbidity remains (*Gouliouris et al.*, 2010).

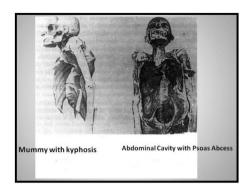


Figure (1)

Figure (2) A picture of wooden statue of a man with hunch back deformity, sharp angulation of spine suggest TB (Egyptian Museum)

The ancient Egyptians had tried to solve their medical problem with all resources they had at that time. **Figure (3)**