

SATELLITE SYSTEM SIMULATION AND VISUALIZATION

A Thesis Submitted to the Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, in the Partial Fulfillment of the Requirements for the Master Degree of Computer and Information Sciences

By: Safwat Helmy Mohammed Hamad

B.Sc. Degree in Computer and Information Sciences (2000)

Demonstrator, Scientific Computing Department,

Faculty of Computer and Information Sciences,

Ain Shams University.

Supervised By: Prof. Dr. Mohammed Said Abdel-Wahab

Professor, Scientific Computing Department, Dean of Faculty of Computer and Information Sciences, Ain Shams University.

Prof. Dr. Ahmed Mohammed Hamad

Professor, Computer Systems Department, Vice Dean of Faculty of Computer and Information Sciences for Society and Environmental Community Affairs, Ain Shams University.

Dr. Mahmoud Ahmed El-Gamal

Lecturer, Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

February, 2004

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Mohammed Said Abdel-Wahab, Dean of the faculty of Computer and Information Sciences, Ain Shams University, for his continuous care and useful comments. He showed me the true meaning of a scholar by example.

I would also give my grateful thanks to my supervisors Prof. Dr. Ahmed M. Hamad, and Dr. Mahmoud El-Gamal for their guidance through the past two years. Thanks also to Prof. Dr. Mohamed Essam Khalifa for the help and support he provided.

I would also like to thank my friends and colleagues in the Scientific Computing department. I have learned so many things from them throughout the years that they are a significant part of my maturing process.

Finally, and most I would like to thank my parents, who dedicated their lifetime raising me to who I am today. Without their constant sacrifice, I wouldn't have come so far. A big thank-you to my wife, who supported me with her prayers and toleration during that critical period of time.

Table of Contents

Chapter 1	Introduction			
	1.1	Proble	em Motivation	
	1.2	Object	tives	
	1.3	Thesi	s Organization	
	1.4	Publis	hed Work	
hapter 2	Lite	rature S	urvey	
	2.1	Introd	uction	
	2.2	Types	of Satellite Orbits	
		2.2.1	Geostationary Orbits (GEO) .	
		2.2.2	Low Earth Orbits (LEO)	
		2.2.3	Medium Earth Orbits (MEO)	
		2.2.4	Highly Elliptical Orbits (HEO)	
	2.3	Celest	ial Coordinate Systems	
		2.3.1	Heliocentric-Ecliptic	
			Coordinate	
		2.3.2	Earth Centered Inertial (ECI)	
			Coordinate	
		2.3.3	Earth Fixed Centered (EFC)	
			Coordinate	
		2.3.4	Right Ascension-Declination	
			Coordinate	
		2.3.5	Latitude-Longitude (Lat-Lon)	
			Coordinate	
	2.4	Coord	inate Transformations	
		2.4.1	Transformation from ECI to	
			EFC	
		2.4.2	Transformation from EFC to	
			Lat-Lon	

		2.4.3	Trans	formation between Right	
			Ascer	nsion- Declination and	
	2.5	The M		ement of Time	
		2.5.1		eal Time vs. Mean Solar	
		2.5.2		ulian Date	
	2.6	Orbital		anics	
	2.7			Planetary Motion	
		2.7.1		er's First Law	
		2.7.2		er's Second Law	
		2.7.3		er's Third Law	
	2.8			s Applied to Earth	
	2.9			ent Set	
	2.10			ment formats	
		2.10.1		A 2-Line Format	
		2.10.2		AT Format	
				Line "Charlie" Elements	
			Form	at	
	2.11	Summa			
			,		
Chapter 3	Mathematical Model of Satellite Motion				
	and (Coverag	e	•••••	
	3.1			ations	
	3.2			putations	
		3.2.1	-	llite Position in Orbit	
		3.2.2	Righ	t Ascension Adjustment	
		3.2.3	_	ting Satellite in space	
		3.2.4		on Algorithm	
	3.3	Satellit		th Coverage	
		3.3.1		ellite's Ground Track	
		3	3.1.1	Ground Track on a	
				None-RotatingEarth	
		3.	3.1.2	The Effect of Earth	
				Rotation	

		3.3.1.3	Calculating Ground			
		3.3.2 Sate	Track ellite's Footprint			
		3.3.2.1	Coverage Geometry			
		3.3.2.2				
		3.3.2.3				
		3.3.2.3	Algorithm			
	3.4	Visual Satell	ite Observing			
	5		ellite Passage			
			nputations			
	3.5		· · · · · · · · · · · · · · · · · · ·			
hapter 4	Syste	em Design and	Capabilities			
	4.1	System Design Methodology				
	4.2		ct Identification			
	4.3		x Diagram			
	4.4	Exploring Software Capabilities				
		4.4.1 Use	r Interface			
		4.4.2 Inte	ractive Dialogs			
		4.4.3 Vie	w Commands			
	4.5	Experimental Results and				
		discusion				
		4.5.1 Circ	cular Orbit			
		4.5.2 Sun	Synchronous Orbit			
		4.5.3 Elli	ptic Low Earth Orbit			
		4.5.4 Geo	stationary Orbit			
			lniya Orbit			
		4.5.6 Pola	ar Orbit			
	4.6	Summary				
ıclusio	ns					
ture W	ork		•••••			
		_				
		v	Code			
oendix	B:N	umerical Resu	lts of Case Studies			

Bibliography	165	
Arabic Summary	1	

Abstract

Problem solving process in computational science usually includes modeling, simulation and visualization. Traditionally, these components are manipulated using disparate packages, resulting in wasted time and a cognitive disconnect between the effects of model changes on simulation results. A much more efficient system is one which integrates modeling, simulation, and visualization in a single unified framework.

In this thesis we will introduce such a system: the Satellite Motion Simulation and Visualization Software System, *SatVis*. SatVis is a software system that uses simulation as a powerful tool for letting us visualize satellite motion in space and allowing us to both quantify and observe its behavior in order to study and compare alternative designs or to troubleshoot existing systems.

The presented algorithms are based on fundamentals of astrodynamics including Kepler's equation, laws of planetary motion, and Newton's laws of motion, as well as the concepts of linear algebra and 3D graphics. Those algorithms are then used for implementing the proposed software system.

The proposed software is capable of placing a satellite in its orbit, computing its position as a function of time, as well as determining the portions of the earth surface covered by the satellite during its continuous motion around the earth. The coverage of the satellite is computed from two different points of view. The first is the *Ground Track*, which focuses on the path formed on earth surface due to the satellite motion. The second is the *Footprint*, which is concerned with the instantaneous area of coverage at a certain time. Finally, the system can produce a set of

reports including position coordinates of the satellite during a specific time period as well as a statistics report about the periods at which the satellite would pass over a target location on earth.

In order to validate the performance of the developed system, six case studies were selected to represent the basic types of satellite orbits. These include: Circular orbit, sunsynchronous orbit, elliptic low earth orbit, geostationary orbit, polar orbit and the famous Russian Molniya orbit. The results produced by the developed system were validated by comparison against those of the Satellite Tool Kit (*STK*).

For each case study we present a detailed description of the orbital elements, orbit 3D visualization, satellite ground track visualization, and satellite footprint visualization. The computed satellite positions are compared with the positions computed by the STK in two different coordinate systems: Earth Fixed Centered (EFC) coordinate system and Latitude-Longitude coordinate system. Generally, we found that the maximum relative error between the computed satellite positions using SatVis and that provided by the STK was $(5x10^{-6})$. That is, the results obtained from the implemented software agree with those of the STK by 99.9% approximately.

List of Figures

Figure		Page
Figure 2.1	Special Satellite Orbits	9
Figure 2.2	Heliocentric-Ecliptic Coordinate System	12
Figure 2.3	The ECI Coordinate System	13
Figure 2.4	The EFC Coordinate System	14
Figure 2.5	The Right Ascension-Declination Coordinate System	15
Figure 2.6	The Longitude/latitude Coordinate System	16
Figure 2.7	The Ellipse	23
Figure 2.8	Increasing Eccentricity values	23
Figure 2.9	The axes of the Ellipse	24
Figure 2.10	The Sun at one focus of the orbit	25
Figure 2.11	Kepler's Second law	26
Figure 2.12	Orbiting needs a balance between speed and Gravity	30
Figure 2.13	Semi-major Axis defines Orbit's size	32
Figure 2.14	Orbital Inclination	34
Figure 2.15	Right Ascensions of Ascending Node	35
Figure 2.16	Argument of Perigee	36
Figure 2.17	True Anomaly defines the position of the satellite	37
Figure 3.1	Eccentric anomaly in the elliptical Orbit	51
Figure 3.2	Newton's Method for solving Kepler's Equation	52
Figure 3.3	The Displacement vector	54
Figure 3.4	Adjusting the value of the right ascension	57

Figure 3.5	Main Steps for computing the celestial location of a satellite in EFC coordinate system.
Figure 3.6	Ground Track
Figure 3.7	West word displacement of ground trace
Figure 3.8	Conversion from EFC to Latitude- Longitude Coordinate System
Figure 3.9	The Satellite's Footprint
Figure 3.10	Footprint of a GEO satellite at (0,0)
Figure 3.11	The Satellite's Field of View
Figure 3.12	Polar Coordinates of a point
Figure 3.13	Main steps for computing the instantaneous Satellite's Footprint
Figure 3.14	The radius of the coverage circle
Figure 3.15	Main steps for computing a satellite's coverage periods over a target location
Figure 4.1	Block Diagram of System Modules
Figure 4.2	Initial View of SatVis Software
Figure 4.3	Map View of SatVis Software
Figure 4.4	Simulation Parameters Dialog
Figure 4.5	Orbital Elements Dialog
Figure 4.6	Target Coverage Statistics Dialog
Figure 4.7	Satellite's 3D Orthogonal Conic Filed of View
Figure 4.8	Satellite's Instantaneous Coverage Details Dialog
Figure 4.9	Satellite's Ground Track Window
Figure 4.10	Satellite's Footprint Window
Figure 4.11	SatVis Rendering For Circular Orbit
Figure 4.12	SatVis Ground track For Circular Orbit.

Figure 4.13	STK Ground track For Circular Orbit	103
Figure 4.14	SatVis EFC Position For Circular Orbit .	104
Figure 4.15	STK EFC Position For Circular Orbit	104
Figure 4.16	SatVis Lat-Lon Position For Circular Orbit	105
Figure 4.17	STK Lat-Lon Position For Circular Orbit	105
Figure 4.18	SatVis Rendering For Sun Synchronous Orbit	106
Figure 4.19	SatVis Ground track For Sun	107
Figure 4.20	STK Ground track For Sun Synchronous Orbit	107
Figure 4.21	SatVis FFC Position For Sun	108
Figure 4.22	STK EEC Position For Sun Synchronous	108
Figure 4.23	Sat Vis Lat-Lon Position For Sun	109
Figure 4.24	STK Lat Lon Position For Sun	109
Figure 4.25	Sat Vis Rendering For Elliptic Low Forth	110
Figure 4.26	Sat Vis Ground track For Elliptic Low	111
Figure 4.27	STK Ground track For Elliptic Low	111
Figure 4.28	SatVis EFC Position For Elliptic Low Earth Orbit	112
Figure 4.29	STK FFC Position For Filiptic Low	112
Figure 4.30	SatVis Lat-Lon Position For Elliptic Low Earth Orbit	113

Figure 4.31	STK Lat-Lon Position For Elliptic Low Earth Orbit
Figure 4.32	SatVis Footprint For Elliptic Low Earth Orbit
Figure 4.33	SatVis Rendering For Geostationary Orbit
Figure 4.34	SatVis Ground track For Geostationary Orbit
Figure 4.35	STK Ground track For Geostationary Orbit
Figure 4.36	SatVis EFC Position For Geostationary Orbit
Figure 4.37	STK EFC Position For Geostationary Orbit
Figure 4.38	SatVis Lat-Lon Position For Geostationary Orbit
Figure 4.39	STK Lat-Lon Position For Geostationary Orbit
Figure 4.40	SatVis Footprint For Geostationary Orbit
Figure 4.41	SatVis Rendering For Molniya Orbit
Figure 4.42	SatVis Ground track For Molniya Orbit.
Figure 4.43	STK Ground track For Molniya Orbit
Figure 4.44	SatVis EFC Position For Molniya Orbit .
Figure 4.45	STK EFC Position For Molniya Orbit
Figure 4.45	SatVis Lat-Lon Position For Molniya Orbit
Figure 4.47	STK Lat-Lon Position For Molniya Orbit
Figure 4.48	SatVis Footprint For Molniya Orbit above Russia

Figure 4.49	SatVis Footprint For Molniya Orbit	125
	above North America	123
Figure 4.50	SatVis Rendering For Polar Orbit	126
Figure 4.51	SatVis Ground track For Polar Orbit	127
Figure 4.52	STK Ground track For Polar Orbit	127
Figure 4.53	SatVis EFC Position For Polar Orbit	128
Figure 4.54	STK EFC Position For Polar Orbit	128
Figure 4.55	SatVis Lat-Lon Position For Polar Orbit	129
Figure 4.56	STK Lat-Lon Position For Polar Orbit	129
Figure 4.57	SatVis Footprint For Polar Orbit Above The North Pole	130

List of Tables

Table		Page
Table 2.1	Orbital Element Set	31
Table 2.2	Columns description in line-2 of the NASA format	39
Table 2.3	Columns description in line-3 of the NASA format	43
Table 2.4	Columns description in Charlie format	45
Table 3.1	Algorithm for computing the Eccentric Anomaly of an Orbit	53
Table 3.2	Algorithm for computing the Julian day number from Gregorian date	55
Table 3.3	Algorithm for computing the Local Siderial Time.	56
Table 3.4	Algorithm for computing the celestial location of a satellite	60
Table 3.5	Algorithm for computing instantaneous Satellite's Footprint	74
Table 3.6	Algorithm for computing an intersection point between a sphere and a line	78
Table 3.7	Algorithm for computing a satellite's coverage periods over a target location	81

Introduction

1.1	Problem	Motiv	ation
1.1	110010111	111011	ation

- 1.2
- Objectives Thesis Organization 1.3
- Published Work 1.4