

Lossy Compression Techniques in Video Codecs A Thesis

Submitted for Partial Fulfillment of the Requirements of the Degree of Master of Science in Electronics and Communications Engineering

Submitted by

Eng. Islam Mohammad Saif Eldien Elsayed

B.Sc. Faculty of Engineering, Shoubra, Banha University, 2010

Supervised by

Prof. Dr. Abdelhaliem Abdelnabi Zekry

Prof. of Electronics and communications
Electronics & Communications Engineering Dept.
Faculty of Engineering, Ain Shams University, Cairo, Egypt

And

Prof. Dr. Ismaeel Mohammad Hafez

Prof. of Electronics and communications
Electronics & Communications Engineering Dept.
Faculty of Engineering, Ain Shams University, Cairo, Egypt

Cairo, Egypt, 2016

JUDGMENT COMMITTEE

Name: Islam Mohammad Saif Eldien Elsayed

Thesis: Lossy Compression Techniques in Video Codecs **Degree:** Master of Science in Electrical Engineering

NAME, TITLE, AND AFFILIATION	SIGNATURE
Prof. Dr. Abd Elmonem Mohammad Elmahdy	
Prof. at the Egyptian Space Program	
Prof. Dr. Wagdy Refat Anis	
Electronics Engineering and Electrical Communications Department	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Abd Elhalim Abd El Naby Zekry	
Electronics Engineering and Electrical Communications Department	
Faculty of Engineering, Ain Shams University.	
Prof. Dr.Ismail Mohamed Hafez	
Electronics Engineering and Electrical Communications Department	
Faculty of Engineering, Ain Shams University.	

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and communication Engineering).

The work included in this thesis was carried out by the author in the Department of Electronics and Communication Engineering, Ain Shams University.

No Part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name: Islam Mohammad Saif Eldien Elsayed

Signature:

Date: 21 / 5 / 2016

Curriculum Vitae

Name of Researcher: Islam Mohammad Saif Eldien Elsayed

Date of Birth: 1/11/1988

Nationality: **Egyptian**

University Degree: B.Sc. of Electrical Engineering, faculty of Engineering Shoubra, Banha University.

Date of Degree: 2010

ACKNOWLEDGMENTS

وَكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيمًا

I would like to express my sincere feelings to the one who taught me how to be a true researcher and how to gain as much knowledge as I can, and also let me see a live sample for a great professor with a humble and religious nature. This is the great Professor Dr. AbdelHaliem Zekry who guided me with every portion in my work, so have all my respect and appreciations.

I would never forget the great notes from Professor Dr. Ismaeel Mohammad Hafez which guided me to make the best of this thesis.

I would like to present this research to the soul of my father who was the most person to encourage me to finalize this work.

Also, I would like to express my gratitude to my mother, brothers, sisters and my friends who I also consider as my big family as without them lending me hands I would never have completed this thesis, so thank you very much.

Contents

1	Inti	roauc	tion	12
	1.1	Vid	eo coding techniques	12
	1.2	Vid	eo applications	13
	1.3	Typ	bes of video compression techniques	15
1.3.1		.1	Lossy Compression Technique	16
	1.3.2		Lossless Compression Technique	16
	1.4	Ain	of this thesis	16
	1.5	Eye	on previous work	17
2	Tra	nsfo	m Coding & Quantization	18
	2.1	Tra	nsform Coding	18
	2.1	.1	Overview on transform coding procedure	18
	2.1	.1	Image nature	19
	2.1	.2	Residual data block nature	21
	2.1	.3	Transformation Theory	24
	2.1	.4	Discrete Cosine Transform "DCT"	27
	2.2 Qua		antization process	33
	2.2	.1	Forward quantization process	34
	2.2	.2	Inverse quantization (rescaling) process	37
	2.3	DC	data portion transform and quantization processes	39
	2.3	.1	DC data transform	41
	2.3	.2	DC data quantization	42
3	Imp	oleme	entation	46
	3.1	Sim	plification operation	47
	3.1	.1	4x4 block forward transform operation simplification	47
	3.1	.2	4x4 block inverse transform operation simplification	48
	3.1	.3	4x4 DC transform operation simplification	49
	3.1	.4	2x2 DC transform operation simplification	51
	3.1	.5	Quantization and rescaling processes simplification	52
	3.2	Imp	lementation operations	53
	3.2	.1	Implementation using Matlab software	53
	3.2	.1	Implementation using Simulink software	65

	3.2.	.2	Implementation using VHDL software	69
4	Ver	ifica	ation	75
	4.1	Ful	ll 4x4 block encoder – decoder example	75
	4.2	Ma	ıtlab assumption verification	76
	4.2.	.1	The Encoder side	77
	4.2.	.2	The decoder side	78
	4.3	Sin	nulink assumption verification	79
	4.4	VH	IDL assumption verification	80
	4.4.	.1	The encoder side	80
	4.4.	.2	The decoder side	81
	4.5	Lui	ma 4x4 DC block encoder – decoder example	82
	4.6	Ma	tlab luma DC assumption verification	83
	4.6.	.1	The luma DC encoder side	84
	4.6.	.2	The luma DC decoder side	85
	4.7	Sin	nulink luma DC assumption verification	86
	4.8	VH	IDL luma DC assumption verification	87
	4.8.	.1	The encoder side	87
	4.8.	.2	The decoder side	88
	4.9	Ch	roma 2x2 DC block encoder – decoder example	88
	4.10	Ma	ıtlab chroma DC assumption verification	89
	4.10	0.1	The chroma DC encoder side	89
	4.10	0.2	The chroma DC decoder side	90
	4.11	Sin	nulink chroma DC assumption verification	91
	4.12	VH	IDL chroma DC assumption verification	92
	4.12	2.1	The encoder side	92
	4.12	2.2	The decoder side	92
5	Cor	nclus	sion & Future Work	93
R	eferen	ces		94
,	ص العرد	الملخد		95

Figures

Fig. 1-1 Videos codecs standard updates	
Fig. 1-2 One way transmission applications	14
Fig. 1-3 One way transmission applications	14
Fig. 1-4 H.264 Encoder operation [14]	15
Fig. 1-5 H.264 Decoder operation [14]	15
Fig. 2-1 4: 4: 4 Sampling format	20
Fig. 2-2 4: 2: 2 Sampling format	20
Fig. 2-3 4: 2: 0 Sampling format	21
Fig. 2-4 Luma component block formation	22
Fig. 2-5 Chroma component blocks formation	22
Fig. 2-6 Chroma DC block extraction.	23
Fig. 2-7 Luma DC block extraction	
Fig. 2-8 Type 1 signal decomposition	
Fig. 2-9 Second type signal decomposition	25
Fig. 2-10 Third type signal decomposition	26
Fig. 2-11 Simplification steps for the forward lossy compression process	35
Fig. 2-12 Simplification steps for the inverse lossy compression process	37
Fig. 2-13 AC-DC encoding procedure	40
Fig. 2-14 AC-DC decoding procedure	40
Fig. 3-1 1-D forward butterfly method	47
Fig. 3-2 Fast DCT implementation block diagram	48
Fig. 3-3 1-D inverse butterfly method	49
Fig. 3-4 Forward 4x4 DC butterfly method	
Fig. 3-5 Forward 2x2 DC butterfly method	52
Fig. 3-6 Matlab version	53
Fig. 3-7 Full transform – quantization encoder block diagram	54
Fig. 3-8 Full transform – quantization decoder block diagram	61
Fig. 3-9 Full Transform – Quantization encoder Simulink implementation	65
Fig. 3-10 Full Inverse transform – Rescaling decoder Simulink implementation	67
Fig. 3-11 Mentor Graphics Modelsim software	
Fig. 3-12 Xilinx software Project Navigator	70
Fig. 3-13 Xilinx software Plan Ahead	70
Fig. 3-14 VHDL AC encoder portion	71
Fig. 3-15 VHDL DC encoder portion	72
Fig. 3-16 VHDL AC decoder portion	73
Fig. 3-17 VHDL DC decoder portion	
Fig. 4-1 "X" Input Matlab verification	76
Fig. 4-2 DCT transformation Matlab verification	77
Fig. 4-3 Forward quantization Matlab verification	77

Fig. 4-4 The rescaling process Matlab verification	
Fig. 4-5 The final recovered data Matlab verification	78
Fig. 4-6 Full Simulink encoder decoder verification procedure	79
Fig. 4-7 "X" Input VHDL verification	
Fig. 4-8 DCT transformation VHDL verification	
Fig. 4-9 Forward quantization VHDL verification	81
Fig. 4-10 The rescaling process VHDL verification	81
Fig. 4-11 The final recovered data VHDL verification	82
Fig. 4-12 "X _{DC} " luma input Matlab verification	83
Fig. 4-13 Luma DC Hadamard transformation Matlab verification	
Fig. 4-14 Forward luma DC quantization Matlab verification	84
Fig. 4-15 The luma DC rescaling process Matlab verification	
Fig. 4-16 The final luma DC recovered data Matlab verification	85
Fig. 4-17 Full Simulink luma DC encoder decoder verification procedure	86
Fig. 4-18 "X _{DC} " luma input VHDL verification	
Fig. 4-19 Transformed & Quantized luma DC data	87
Fig. 4-20 The final rescaled & recovered luma DC data VHDL verification	
Fig. 4-21"X _{DC} " chroma input Matlab verification	89
Fig. 4-22 Chroma DC Hadamard transformation Matlab verification	
Fig. 4-23 Forward chroma DC quantization Matlab verification	90
Fig. 4-24 The chroma DC rescaling process Matlab verification	90
Fig. 4-25 The final chroma DC recovered data Matlab verification	91
Fig. 4-26 Full Simulink chroma DC encoder decoder verification procedure	91
Fig. 4-27 "X _{DC} " chroma input VHDL verification	92
Fig. 4-28 Transformed & Quantized chroma DC data	92
Fig. 4-29 The final rescaled & recovered chroma DC data VHDL verification	92

Tables

Table 2-1 QP value vs Qstep value	34
Table 2-2 1/VF (0, 0) value estimation	
Table 2-3 Calculated MF _{DC} value	

Abbreviations

RTC: Real Time Communication

AVC: Advanced Video Codecs

DCT: Discrete Cosine Transform

VCEG: Video Coding Experts Group

ITU: International Telecommunications Union

MPEG: Moving Picture Experts Group

ISO/IEC: International Standardization Organization and International Electrotechnical

Commission

FPGA: Field Programmable Gate Array

VHDL: Very High Density Logic

HVS: Human Visual System

Qstep: Quantization step size

QP: Quantization Parameter

Key Words

H.264, AVC, Transform Coding, Quantization, Lossy video compression, HVS, QP, Qstep, Discrete Cosine Transform, DCT, ITU, Hadamard, Butterfly

1 Introduction

Communication is the heart of any technological advance all over the world, so, a good communication media leads to a good atmosphere for research and development. The Real Time Communication (RTC) became the most desirable type of communications nowadays in addition to media broadcast communications. However, the available media bandwidth desired for transmission is limited and the amount of transmitted data grows up over time, it is practically impossible to transmit this huge amount of data in its natural form, especially when the data required to be transmitted is of a big size nature as image and video data. This big size data does not only affect the bandwidth resources, but also consumes storage and processing resources prior to transmission or storage operations. So, compression operation became a must in order to save transmission media, storage and processing resources. In this book we are dealing with the most bandwidth and resources consuming data, which is the image and video data.

1.1 Video coding techniques

The image and video data compression operation is called "Coding" operation. Image and video data coding operations have been updated very widely over the last years due to the dramatically updates in the image and video quality and so the data size. All data types are represented in binary coded bits, so, coding operation is practically the reduction in the amount of bits needed to represent the image or video file. The reduction operation in the coded bit stream is actually indispensable in order to save transmission bandwidth resources beside the storage and processing resources needed to code the image data or the video stream. Since then, many coding techniques rose up over time to keep pace with the enormous evolution in the quality of the image and video stream quality and so their bit representation.

A set of rules were built in order to organize the coding operation, those rules are combined in the form of a Standard Book, the Standard Book is a document that defines the coding structure of the image or video bit representation. There are 2 organizations responsible for mapping the standards for the video coding techniques ^{[1] [2]}:

- 1- ITU-T Video Coding Experts Group (VCEG): International Telecommunications Union –Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT).
- 2- ISO/IEC Moving Picture Experts Group (MPEG): International Standardization Organization and International Electrotechnical Commission.

Those organizations came up with many standard updates since 1984 till now due to the great updates in image and video quality. The following graph illustrates the standard update history till reaching H.264 technique which is the scope of this thesis [13].

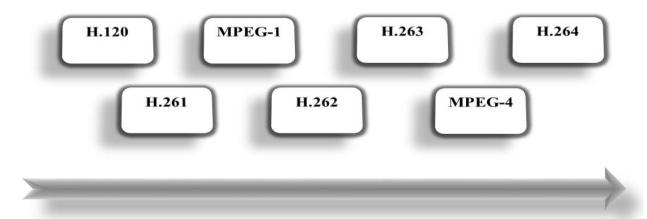


Fig. 1-1 Videos codecs standard updates

The main advantages of H.264 over all the previous coding generations is:

- 1. Small file size for longer recording time and better network transmission, this is due to the small coding block size (will be declared in the next chapter) and higher compression efficiency.
- 2. Fluent and better video quality for real time playback.
- 3. More efficient mobile surveillance application. [19]

1.2 Video applications

H.264/AVC rose up to be the widely used coding technique for most of the video streaming and image broadcasting applications used nowadays including [7]:

- Broadcasting over
 - Ethernet, modem or RF cable.
 - Storage over optical and magnetic drivers such as HDDs, DVDs ... etc.
- Live video streaming services over
 - Wired communication media such as ISDN, LAN network ... etc.
 - Wireless communication media such as WLAN, Mobile Networks ... etc.
- TV video transmission
- Conversational communication applications such as video conferencing.
- Multimedia messaging services
- Video on demand applications

In order to sum up the previously discussed application types, those applications are either one way communication applications which consists of simply a transmitting device, transmission media (wired or wireless) and the receiving device which is shown in the following figure

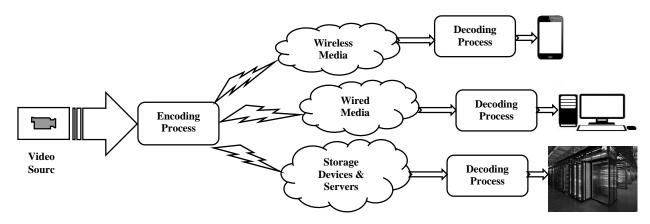


Fig. 1-2 One way transmission applications

Or two way transmission applications in which each side consists of a transceiver device. This type of application is more complicated than the one way communication type as it nearly consumes double the bandwidth, processing and storage resources. The operation is shown as follows

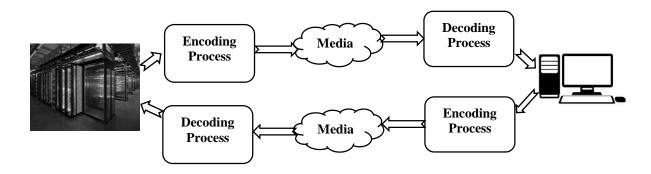


Fig. 1-3 One way transmission applications

According to the previously discussed applications and modes of data transmission, the urgency for video coding (video compression) criteria became clearer.

1.3 Types of video compression techniques

The overall video compression operation is described in the following graph [14]

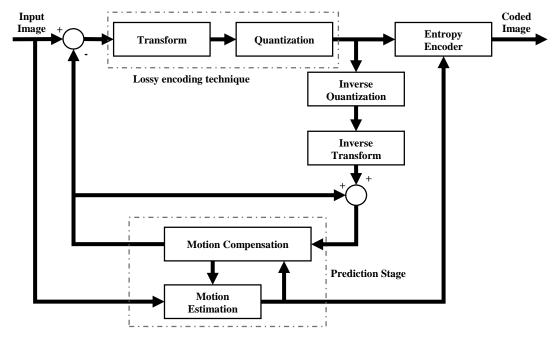


Fig. 1-4 H.264 Encoder operation [14]

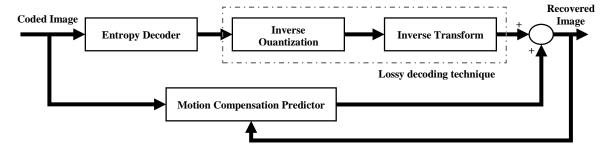


Fig. 1-5 H.264 Decoder operation [14]

As shown in figure 1-4, the encoder operation is clarified, the image or video frame (which is formed by a group of pixels that represent the image or video frame contents) is predicted and the residual data generated from the prediction stage is transferred to the compression stages. First the residual data is compressed using the lossy encoding technique procedure steps (Transformation and Quantization), and then the resulted data is transferred to the Entropy lossless encoding technique stage prior to transmission over the specified media.

In the decoding operation at the receiving side, the received data is de-compressed using lossless Entropy decoder, then it is inverse quantized and inverse transformed in order to