ENDOVASCULAR REPAIR OF LOCALIZED PATHOLOGICAL LESIONS OF THE DESCENDING THORACIC AORTA.

Thesis
Submitted in partial fulfillment of
M.D degree
Of
General Surgery

By

SHERIF ISMAIL ATTIA

MB; Bch, M.Sc

Supervisors

Prof. AMR AHMED GAD

Professor of
General and Vascular surgery
Faculty of Medicine,
Cairo University.

Prof. PHILIPPE DOUEK

Head of Department Of Interventional Radiology, Claude Bernard University, LYON, FRANCE.

Prof. HUSSEIN M. KHAIRY

Professor of
General and Vascular Surgery,
Faculty of Medicine,
Cairo University.

Prof. ALAA ABDEL HALEEM

Professor of
General and Vascular Surgery,
Faculty of Medicine,
Beni Suef University.

Faculty of Medicine Cairo University 2007

Acknowledgement

He and will always be Allah who blessed my work
And who sent me those who where of help

I am greatly obliged to Professor Amr Ahmed Gad, Professor of general surgery department, Cairo University who created the spirit of this work and whose fatherhood attitude, constant support and encouragement made this work to be accomplished.

I would like to express my deepest gratitude to Professor Hussein Mahmoud Khairy, Professor of General Surgery Department, Cairo University, for his valuable guidance, precious suggestions and patience, as well as his co-operation to achieve this work.

I would like to thank Professor Philippe Douek Professor of Interventional Radiology Department, Claude Bernard University, for his help and cooperation and constant support, patience, valuable guidance and for allowing me to perform my practical work at his department.

I would like to thank professor Alaa Abd el halim Marzook, Professor of General Surgery Department, Beni Suef University, for his help and guidance to conduct this work.

I would like to dedicate this work to my mother, father, my whole family and my wife Safy who were encouraging and supporting me all the time.

INDEX

II. List of al	bbreviationsPIV
III. List of t	ablesPVI
V. List of fig	guresPVII
IV. Abstrac	tP9
V. Introduc	tionP11
VI. Review	of literatureP14-86
1. Anato	omy of the thoracic aortaP14
2. Funct	tion & Aging of the aortaP25
3. Patho	ology:P29
-	Aortic aneurysm
-	Thoracic aortic aneurysm
-	Acute traumatic blunt rupture of the aorta
-	Atypical aortic dissection
a)]	Penetrating atherosclerotic ulcer
b)	Intramural hematoma
-	Aortic dissection
a) (Classification
b)	Stanford type B aortic dissections

Index

4. Manage	mentP56
- Surgica	ıl treatmentP:
	a) Aortic aneurysm of the thoracic ac
	b) Aortic dissection of the thoracic a
- Endova	scular therapyP65
I.	Patient selection
II.	Anatomic considerations
III.	Technical considerations
IV.	Type of the endografts (Stents)
V.	Endovascular application
VI.	Post-procedure care
VII.	Judgement criteria
VIII.	Success criteria
IX.	Advantages and disadvantages of the technique
X.	Fenestration in standard type B aortic dissection
XI.	Complications of the technique
XII.	Comparison with open surgical repair
. Patients and	MethodsP87
I. Results	P95
Discussion	ם

Index

X. Summary & Conclusions	P125
XI. References	P130
XII. Protocol of endovascular treatment of the thoracic ao	rtaP142
XIII. Arabic summary	P146

LIST OF ABBREVIATIONS

AAAs: Abdominal aortic aneurysms

AD: Aortic dissection

AOR: Ascending aortic replacement

ASA: American society of anaesthetists

CAD: Coronary artery disease

COPD: chronic obstrtuctive pulmonary disease

CRP: C-reactive protein

CT: Computered tomography

CVA: Cerebrovascular accident

CVS: Cardivascular surgery

DA: Dissecting aorta

Dist land diam: distal landing diameter

DTA: Descending thoracic aorta

ePTFE: expanded Polytetrafluororthylene

ICU: Intensive care unit

IMH: Intramural hematoma

ISCH: Ischemia

LPS: Low profile system

LSA: Left subclavian artery

MRA: Magnetic resonance angiography

MRI: Magnetic resonance imaging

PAU: Penetrating aortic ulcer

Prox land diam: Proximal landing diameter

PTFE: Polytetrafluororthylene

SCa: Subclavian artery

TAAs: Thoracic aortic aneurysms

TAAAs: Thoraco-abdominal aortic aneurysms

Index

TAD: Thoracic aortic disease

TAG: Tubular aortic graft

TDS: Thoracic delivery system

TEE: Transthoracic esophageal echocardiography

LIST OF TABLES

Table I: Patients clinical characteristics and medical comorbiditiesP101
Table II: Preoperative and postoperative details of six patients with acute Stanford type B dissectionP102
Table III: Preoperative and follow-up details of 11 patients presented acute traumatic rupture of the isthmusP103-104
Table IV: Preoperative and postoperative characteristic of 13 patients with a degenerative aneurysm of the descending aortaP105-106
Table V: Preoperative and follow-up of 7 patients presented a pseudoaneurysm of the distal arch and the descending aortaP107
Table VI: Anatomic and procedural detailsP108
Table VII: Early and late major events and Follow-upP109

LIST OF FIGURES

Figure 1: Intercostals branches of thoracic aortaP18
Figure 2: the thoracic aorta, viewed from the left sideP24
Figure 3: A large symptomatic arteriosclerotic fusiform aneurysm of the descending thoracic aorta and an asymptomatic fusiform aneurysm involving the entire abdominal aortaP33
Figure 4A: Sacciform aneurysm of the lower descending thoracic aortaP33
Figure 4B: Treatment consists of patch graft aortoplastyP33
Figure 5: The aneurysm had eroded the body of a vertebra causing weakness of the aortic wall and abdominal pain
Figure 6: The aneurysm had eroded the oesophagus causing hematemesis
Figure 7A: Acute aortic injury in a car accident was evident by aortographyP39
Figure 7B: Treatment consisted of graft replacement of the injured segmentP39
Figure 8: Classification of aortic dissection DeBakey and StanfordP51
Figure 9: A large chronic type III aortic dissection manifested by chest pain and a large mass in the left chest by roentgenogram
Figure 10: Acute type B aortic dissectionP55
Figure 11: Atheriosclerotic aneurysm partially filled with clot, involving most of the descending aortaP61
Figure 12: Treatment consisted of graft replacement by inclusion technique and simple clampingP61

T		1		
ı	n	10	le	X

Figure 13: Acute type III aortic dissection causing anuria and ischemic leg symptomsP63
Figure 14: The aneurysm was replaced with a woven Dacron tube that extended from the origin of the left subclavian artery to the celiac axisP64
Figure 15: Technical steps for the deployment of the Talent endovascular thoracic stent in a simple thoracic aneurysmP82
Figure 16: Aortic dissection with dynamic ischemia. Aortic fenestration with non covered aortic placementP84
Figure 17: 22 year-old man with traumatic rupture of thoracic aortaP110
Figure 18: 78 year-old man with atherosclerotic isthmic fusiform aneurysm of the descending aortaP110-111
Figure 19 : 76 year-old patient presented atherosclerotic thoracic aneurysm P111-112
Figure 20: 54 year-old man presenting acute Stanford B dissectionP113
Figure 21: The same patient after deployment of the stent and closure of entry site .P114
Figure 22: 54 year-old man with anastomotic thoracic aortic false aneurysm 4 years after by Bentall surgeryP115
Figure 23: 77 year-old male presented penetrating aortic ulcerp116
Figure 24: Aortic dissection with closure of the site of entry with endovascular stentP124

ABSTRACT

Objective: The endoluminal stent-graft represents an attractive and a less invasive technique in the treatment of the various diseases of the descending thoracic aorta. The purpose of this study was to evaluate the endovascular stent-graft *Talent* in the treatment of various localized diseases of the descending thoracic aorta.

Methods: Over a 3-year period, thoracic endograft Talent were placed in 40 patients with a high surgical risk, presenting localized lesions of the descending thoracic aorta: Degenerative aneurysm (n=13), Acute traumatic rupture (n=11), Acute Stanford type B aortic dissection (n=6), False aneurysm (n=7) and Penetrating atherosclerotic ulcer (n=3). 15 patients (37.5 %) were treated as emergencies. The feasibility of endovascular treatment and sizing of the aorta and stent-grafts were determined pre-operatively by Magnetic Resonance Angiography (MRA) and intra-operative angiography. Immediate and mid term technical and clinical success were assessed by clinical and MRA follow-up.

Results: Endovascular treatment was completed successfully in all 40 patients with no conversion to open repair or intra-operative mortality. The mean operative time was 37.5+/-7 minutes. The overall 30-day mortality rate was 10 % (n=4) all in emergency cases, causes not related to the endograft. The primary technical success

was 92.5 %. The mean follow-up period was 15 ± 75 months. The survival rate was 95% (n=35). Diminution of the aneurismal size was observed in 47.5% (n=19).

Conclusion. Endovascular treatment of the various localized diseases of the descending thoracic aorta is a promising, feasible, alternative technique to open surgery in well selected patients.

Author Key words: Stent-graft, Aneurysm, descending thoracic aorta, Type B dissection, Trauma, atherosclerotic ulcer.

Introduction

The traditional management of thoracic aortic diseases is based on surgical graft replacement. Although the results of surgical treatment have steadily improved over the past 20 to 30 years, a significant peri-operative morbidity and mortality do occur, particularly in those patients who have coexisting medical illnesses or who have previously undergone one or more operations for treatment of intra-thoracic diseases (Neuhauser et al., 2004).

In this regard, a less invasive approach is desirable, especially in patients who are unfit for open surgery, or who can be managed with conventional surgery only with a high operative risk as acute aortic rupture. In these patients, aortic replacement under general anaesthesia and possibly extra-corporeal bypass may not be tolerated (Dake., 2001).

Endovascular stent-grafts offer an alternative treatment approach that may be less invasive, and that may involve a lower risk and a shorter hospital recuperation than traditional operative therapy (Orend et al., 2003).

The concept of transluminally placed endovascular stent-grafts was initially proposed by *Dotter and Judkins* in 1964. Subsequently, a number of researchers performed feasibility studies using experimental animal models of abdominal aortic aneurysms (Orend et al., 1996). *Parodi, Palmaz and Barone* in 1991

reported the first successful clinical endovascular graft repair of an infrarenal abdominal aortic aneurysm in Argentina (Parodi et al., 1991).

In 1994, *Dake* and associates evaluated the feasibility of a transluminal stent-graft placement to treat descending thoracic aortic aneurysms.

Recently, the clinical use of endovascular stent-grafts was reported for the management of a variety of arterial pathologies, including abdominal aortic aneurysms, thoracic aortic aneurysms, subclavian artery aneurysms, iliac artery aneurysms, arteriovenous fistulas with promising short-term and mid-term results (Scheinert et al., 2004).

The early application of these new techniques was challenging because the primitive nature of the devices employed; however, in the relative short period of time since their introduction, it already appears likely that stent-grafts will play a significant role in the future management of vascular diseases (Scheinert et al., 2004).

Hypothesis:

The recent application of endovascular devices to the infrarenal abdominal aortic segment with good results comparable to open surgery, has tempted researches to apply the same technique in an other more difficult segment of the aorta, the thoracic aorta. It seems that the technique is feasible, safe and durable.

Aim of the work

This work explores the feasibility and the durability of endovascular stent-grafts treatment of thoracic descending aorta lesions. We will investigate the advantages and disadvantages of this procedure included safety, duration of the procedure, hospital stay and its complications within a follow up period of 12 months.