New Advances in Diagnosis and Treatment of Atopic Disorders

An Essay Submitted for Partial Fulfillment for the Master Degree in Clinical Pathology By

Amani Saeed Ali Mohammed

(M.B.,B.Ch)
Faculty of Medicine – Cairo University

Supervised By

Prof. Dr. Laila Abd Alaala Elshawarby

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Prof. Dr. Manal Zaghloul Mahran

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Dr. Abeer Al Sayed Ali Shehab

Lecturer of Clinical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2005

ACKNOWLEDGEMENT

Thanks to God who have lightened my path to become a humble student of a noble profession, and granted me the ability to accomplish this work.

I wish to express my deep gratitude and appreciation to, **Professor Dr. Laila**Abd Alaala Elshawarby, Professor of Clinical Pathology, Faculty of Medicine-Ain Shams University, who gave me the honor of working under her meticulous supervision.

Words can never express my hearty thanks and indebtedness to, **Professor Dr. Manal Zaghloul Mahran, Professor of Clinical Pathology, Faculty of Medicine–Ain Shams University,** for her continuous encouragement, excellent guidance, and powerful support.

I gratefully acknowledge **Dr. Abeer Al Sayed Ali Shehab, lecturer of Clinical Pathology, Faculty of Medicine–Ain Shams University,** for her generous help, expert advice, unlimited support and assistance throughout this work.

I would like to express my sincerest gratitude and thanks to my husband who always provide me with great support and encouragement, and to my family. Special prayers for my father that God will reward him in his heavens.

Contents

• Introduction and aim of the work	.1
• Review of Literature	.3
Chapter 1: An overview on Atopy	.3
I. Type I Hypersensitivity Allergic Reaction	4
A. Atopic Allergens	4
 Pollen Allergens Mold Allergens Arthropod Allergens Food Allergens Animal Allergens 	7 7 8
B. Pathophysiology of Type I Allergy	8
 The Concept of Allergic Sensitization Pathophysiology of the Established Allergic Memory Immune Response 	
C. Cells Involved in the Allergic Immune Response	14
1. APC a. Dendritic Cells (DCs) b. Macrophages 2. T Lymphocytes	14 15

3. B Lymphocytes4. Mast Cells5. Basophils6. Eosinophils	22
II. Diagnosis of Atopy	31
A. In Vivo Tests	31
1. Skin Tests	31
a. Scratch	32
b. Prick	
c. Intradermal Tests	33
2. Provocation Tests	
a. Nasal Provocation	
b. Oral provocation	
c. Bronchial Provocation	
B. In vitro tests	38
1. Indications of in vitro testing	39
2. Contraindication	
3. Types	
a. Total serum IgE	
b. Allergen specific IgE	
i. Radioallergo sorbant test (RAST)	
ii. Cellulose Polymer Activated (CAP) System	
iii. UNICAP 100	
iv. Immunoblotting	
-Recombinant Allergens in Diagnosis of Atopy	

Chapter 2: Treatment of Atopic diseases49
I. Allergen Specific Immunotherapy (SIT)49
-Historical Prespective49
A. Mechanisms of SIT50
Model 1: SIT Shifts the Th2-dominated Allergen-specific Immune Toward Th1 Response
B. Types of Immunotherapy55
1. Conventional Immunotherapy552. Unconventional Immunotherapy56
C. Indications of Immunotherapy57
1. Conditions for which Effectiveness of Immunotherapy has been Demonestreted
3. Controversial or unclear Indications61

D. Risks Associated with Immunotherapy	62
E. Selection of Relevant Allergen Extracts	64
1. Source of Allergen Extracts	
2. Allergen Standerdization3. Allergen Potency and Stability	
II. New Techniques and Future Directions	68
A. Allergen Modification	68
1. Hypoallergens	
a. Chemically Modified Allergens	
i. Allergoids	
ii. Maleylated Allergens	71
iii. Allergen-ISS Conjugates (AIC)	
b. Naturally Occuring Hypoallergens	75
c. Engineered Hypoallergens	76
i. Site-Directed Mutants	78
ii. Deletion Mutants	79
iii. Fragments	79
iv. Oligomers	80
v. Chimeras	81
2. Synthetic Peptides	83
a. B-cell Epitope-derived Peptides	83
b. T-cell Epitope-containing Peptides	84
c. Mimotopes	
3. Protein Fusions	88
B. Customized Allergen DNA Vaccines	89

-Strategies to Increase Safety of Allergen DNA Vaccine	s92
DNA Vaccines Translating Hypoallergenic Allerge Derivatives	
2. Ubiquitingtion: A Routine Strategy to Produce Hypoallergenic DNA Vaccines	95
3. Vaccine Dose Reduction with Self-replicating Vaccines	
4. Improvement of Immunogenicity and Tailor-made Immune Responses	
a. Harmonization of the Codon Usage	
b. Th1/Th2 Modulation of Allergy DNA Vaccines	
5. DNA Multivaccines	101
C. Alternative Treatments and Supporting Adjuvator for SIT	
 Possible Role of Th Switch and Cytokines Possible Role of Tregs in Allergen Immunotherapy 	
• References	110
• Summary	135
• Arabic Summary	

LIST OF ABBREVIATIONS

Ag	Antigen.
AIC	Allergen ISS conjugates.
APC	Antigen presenting cells.
AS	Allergen specific.
AU	Allergy unit.
BAU	Biological allergy unit.
BCG	Bacille Calmette Guerin.
С	Complement.
CAP	Cellulose polymer activated within a
	capsule.
CCL11	Eotaxin.
CCR3	Eotaxin Receptor.
CD	Cluster of differentiation.
cDNA	Complementary DNA.
CPG	Unmethylated cytosine-guanosine.
CRD	Component resolved diagnosis.
CRIT	Component resolved immunotherapy.
CTLA-4	Cytotoxic T-Lymphocyte antigen-4.
DCs	Dendritic cells.
EAR	Early asthmatic response.
EIA	Enzyme immunosorbant assay.
ELISA	Enzyme-linked immunosorbent assay.
ER	Endoplasmic reticulum.
FcεRI	High-affinity receptor for IgE.
FcεRII	Low-affinity receptor for IgE.
FEV_1	Forced expiratory volume in one second.
GM-CSF	Granulocyte monocyte-colony stimulating
	Factor.
HLA	Human leukocyte antigen.
ICAM-1	Intercellular adhesion molecule 1.

IFN	Interferons.			
IgA	Immunoglobulin A.			
IgE	Immunoglobulin E			
IgG	Immunoglobulin G.			
IL	Interleukin			
IR	Index of reactivity.			
ISSs	Immunostimulatory sequences.			
IU	International unit.			
LAB	Lactic acid bacteria.			
LAR	Late asthmatic response.			
LPRs	Late phase response.			
LPS	Lipo Poly Saccharides.			
LSPs	Long synthetic overlapping peptides.			
LTB4	Leukotriene B4.			
LTC4	Leukotriene C4.			
MHC-I	Major histocompatibility complex class I.			
MHC-II	Major histocompatibility complex class II.			
MIP-1a	Macrophage inflammatory protein-1a.			
MIP-1α	Macrophage inflammatory protein- 1α .			
MRT	Modified RAST test.			
NGF	Neutrophil growth factor.			
NK	Natural Killer cell.			
NMR	Nuclear magnetic resonance.			
nsLTPs	Nonspecific lipid transfer proteins.			
ODNs	Oligodeoxy- nucleotides.			
PAF	Platelet activating factor.			
PBMC	Peripheral blood monocytes.			
PEG	Polyethylene glycol.			
PRR	Pattern-recognition receptors.			
RAST	Radioallergosorbent test.			
RIA	Radioactive immunosorbant assay.			
SIT	Allergen specific immunotherapy.			

SRs	Scavenger receptors.
TCR	T-cell receptor.
TGF-α	Transforming growth factor-α.
TGF-β	Transforming growth factor-β.
Th	T-helper cells.
TLR	Toll-like receptor.
TNF	Tumor necrosis factor
TR	Therapeutic unit.
Tregs	Regulatory T cells.
VPF/	Vascular permeability factor/ Vascular
VEGF	endothelial cell growth factor.

LIST OF TABLES

Table	Title	Page
Table 1	A summary of the four types of allergy.	3
Table 2	Structure and biologic function of some	6
	allergens.	
Table 3	Factors involved in allergic sensitization.	9
Table 4	Tregs that may be involved in prevention	19
	of allergy.	
Table 5	Potential clinical application of	21
	CD25+CD4+ Tregs.	
Table 6	Possible mechanisms of SIT.	54

LIST OF FIGURES

Figure	Title	Page
Fig.1	The allergic immune response (top and	11
	middle panels). Mechanisms of allergic	
	inflammation (bottom panel).	
Fig.2	LPR scenario emphasizing the putative	28
	regulatory roles of basophils in allergic	
	inflammation.	
Fig.3	Possible advantages to the use of	69
	hypoallergens for SIT.	
Fig.4	Examples of hypoallergens.	77
Fig.5	Synthetic peptides.	87
Fig.6	Customized allergens by protein fusion.	89
Fig.7	Potential mechanisms of conventional	108
_	allergen immunotherapy.	

Introduction

Allergic atopic disorders, such as rhinitis, asthma, and atopic dermatitis, are the result of a systemic inflammatory reaction triggered by type 2 T helper (Th2) cell-mediated immune responses against 'innocuous' antigens (allergens) of complex genetic and environmental origin (**Romagnani**, 2004).

Allergic diseases are common, disabling and potentially life threatening that lead to production of excessive allergen-specific immunoglobulin E (IgE) (**Prescott and Jones, 2002**). The clinical manifestations of allergic diseases are often the same as with other diseases which makes their diagnosis difficult. Therefore, clinical practitioners often need a laboratory test that is capable of identifying them in a suitable manner with low costs, speed of execution, availability at most laboratories and a high level of sensitivity in identifying its target population (**Naspitz et al., 2004**).

Recent technological advances have provided a better understanding of underlying disease process and offered new potential therapeutic targets. New techniques include: peptide immunotherapy, allergen modification, allergen gene vaccination, and others (**Prescott and Jones, 2002**).

Immunotherapy is a therapeutic intervention in which the patient is administered increasing doses of an extract of specific allergen(s), to which the patient has been demonstrated to be allergic, in order to modulate the patient's immune response, thus, attenuate or eliminate the symptoms (**Bousquet et al., 1998**).

Vaccines are used in medicine as immune modifiers (Bousquet et al., 1998). Allergen vaccines are used in the diagnosis and treatment of allergic diseases as specific immunomodulatory therapy. In clinical practice, allergen vaccines have been shown to be effective in the treatment of allergy and anaphylaxis. Successful allergen immunotherapy is associated with a long-term decrease in antigen-specific IgE production, an increase in antigen-specific IgG production, a decrease in Th2 proliferation to antigen, and an increase in antigen-specific suppresser T cell activity (Slater et al., 2000).

Aim of the Work

The aim of this study is to spot light on the diagnosis of atopic diseases and their new treatment modalities.

An overview on Atopy

The term allergy was introduced by Clemens Von Pirquet in 1906 to describe overwhelming pathological reaction of the body due to intercurrent contact with antigens (Ags) (Valenta et al., 2004). Allergy is characterized by increased ability of some immunocompetent cells to respond to a group of ubiquitous Ags that activate the immune system after their inhalation, ingestion, or penetration through the skin (Guerra et al., 2001).

Combs and Gell, 1975 proposed a first detailed classification of allergic reactions in four types (I-IV) based on defined underlying pathomechanism (Table 1) (Valenta et al., 2004).

	(I)	(II)	(III)	(IV)
Type	Immediate	Cytotoxic	Immune complex	Delayed
Ag	Pollens,	Cell surface	Exogenous	Cell/tissues
	molds,	tissue bound	(bacteria, fungi)	bound
	mites, drugs,		and autoantigen	
	and parasite			
Mediators	IgE & mast	IgG, IgM	IgG, IgM, IgA	Tc, TD,
	cells	and	And complement	activated
		complement		macrophage&
				lymphocytes
Time taken				
for reaction	15-30 min	Rapid	4-12 hours	12-48 hours
to develop				
Diseases&	Eczema,	Haemolytic	Autoimmune	Contact
condition	urticaria,	anaemia,	diseases(e.g.,SLE)	dermatitis,
produced	anaphylaxis	transfusion		leprosy, T.B
		reaction		

Table1: A summary of the four types of allergy (Ghamriny, 2003).