

EVALUATION OF CODE REQUIRED SEPARATION DISTANCE BETWEEN ADJACENT R.C FLAT SLAB MID-RISE BUILDINGS

By

Hosam Eldin Mohamed Gamal Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

EVALUATION OF CODE REQUIRED SEPARATION DISTANCE BETWEEN ADJACENT R.C FLAT SLAB MID-RISE BUILDINGS

By Hosam Eldin Mohamed Gamal Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Walid Abdellatif Attia

Prof. Dr. Ahmed H. Ahmed Amer

Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University

Dr. Mostafa M. Abdelwahab ElSayed

Assistant Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University

EVALUATION OF CODE REQUIRED SEPARATION DISTANCE BETWEEN ADJACENT R.C FLAT SLAB MID-RISE BUILDINGS

By Hosam Eldin Mohamed Gamal Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Walid Abdellatif Attia (Thesis Main Advisor)

Prof. Dr. Ahmed H. Ahmed Amer (Thesis Advisor)

Prof. Dr. Sherif Ahmed Mourad (Internal Examiner)

Prof. Dr. Hatem Hamdi Gheth (External Examiner)

Professor at Housing& Building Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Hosam Eldin Mohamed Gamal Mahmoud

Date of Birth: 17/2/1991 **Nationality:** Egyptian

E-mail: Hosam.m.gamal@gmail.com

Phone: 01118978356

Address: 8 Momtaz street, Omrania, Giza

Registration Date: 01/03/2013 **Awarding Date:** --/--/2018

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Walid Abdellatif Attia Prof. Dr. Ahmed H. Ahmed Amer Dr. Mostafa M. Abdelwahab ElSayed

Examiners:

Prof. Dr. Walid Abdellatif Attia (Thesis main advisor)
Prof. Dr. Ahmed H. Ahmed Amer
Prof. Dr. Sherif Ahmed Mourad (Internal examiner)
Prof. Dr. Hatem Hamdi Gheth (External examiner)

Professor at Housing& Building Research Center

Title of Thesis:

EVALUATION OF CODE REQUIRED SEPARATION DISTANCE BETWEEN ADJACENT R.C FLAT SLAB MID-RISE BUILDINGS

Key Words:

Performance evaluation; Pounding; Gap distance; Fragility curves; Code requirement

Summary:

Recent and past earthquake damages have proven that buildings can undergo significant structural damage under intense ground shakes. One of the possible factors that may lead to structural damage is the seismic pounding phenomenon, where adjacent buildings with insufficient gap distance may collide with each other leading to excessive shear forces and moments. As pounding may cause fatal outcomes, evaluation of code requirements for the gap distance between adjacent buildings is addressed in this thesis. A parametric study on the inelastic response of flat slab buildings under seismic action is carried out. In addition, the study evaluates the requirements of Egyptian Code of Practice regarding separation distance between adjacent mid-rise flat slab buildings. In this study, typical RC flat slab buildings, with three heights, represents residential buildings designed in accordance with the Egyptian Standards are analyzed using nonlinear time history analysis. Ten different earthquake records with 6 different peak ground accelerations varying from 0.15g to 0.7g are considered herein in order to simulate constructing the same buildings in different locations with different earthquake intensity. In this regard, fragility curves, which illustrate the relation between the peak ground acceleration and the probability of certain damage occurrence, are established for the concerned buildings considering different damage states. Then, more than 350 nonlinear pounding scenarios between adjacent buildings are studied and compared with Egyptian Code of Practice requirements, clarifying the need to adjust the Egyptian Code to prevent all pounding probabilities, especially for smaller earthquake intensities less than 0.3g.

Acknowledgements

I truly thank my fiancée, my near future wife, Nermin Ali for her continuous encouragement, help and support. Without her I would have never done any of this, I would have surrendered to the stress; may Allah bless her now and always.

My father and mother really helped, endured too much stress and supported me to the end. I shall thank my cousins especially Momen Mostafa and Nour Wael for letting me access their laptops to perform the analysis.

Special thanks to Dr. Ahmed Hassan Amer for helping me and advising me. Also, I learned a lot from Dr. Mostafa Abdelwahab Elsayed, in academic and social fields; An amazing doctor and an awesome friend. He helped me, worked with me and supported me a lot, more than I can count.

I shall never forget Dr. Abdelmeguid Khafagi, head of bridge 7 department at Arab Consulting Engineers (ACE) for his support and for accepting condition about leaving work early. I learned most of my knowledge from him and I am still learning.

Dedication

To my fiancée, To my mother and father, To my grandmother, To my entire family.

Table of Contents

ACKN	OWLEDGEMENTS	I
DEDIC	CATION	III
LIST (OF TABLES	IX
LIST (OF FIGURES	XI
ABSTI	RACT	XVII
CHAP'	ΓER 1 : INTRODUCTION	1
1.1.	PROBLEM STATEMENT	1
1.2.	RESEARCH OBJECTIVE	1
1.3.	METHODOLOGY	2
1.4.	SIGNIFICANCE	3
1.5.	OUTLINE OF THIS THESIS	3
CHAP'	TER 2 : LITERATURE REVIEW	7
2.1.	Introduction	7
	2.1.1. General	7
	2.1.2. Earthquake and Its Effect	7
	2.1.3. Purpose of Seismic Design	7
2.2.	Analysis Procedures	8
	2.2.1. Linear Static Analysis	8
	2.2.2. Elastic Response Spectrum Analysis	9
	2.2.3. Nonlinear Static Pushover Analysis	9
	2.2.3.1. Capacity Spectrum Method (CSM)	10
	2.2.3.2. N2 Method	11
	2.2.3.3. Displacement Coefficient Method (DCM)2.2.3.4. Modal Pushover Analysis Method (MPA)	11 12
	2.2.4. Linear Dynamic Analysis	13
	2.2.5. Non-linear Dynamic Time History Analysis	13
2.3.	PERFORMANCE BASED DESIGN AND STRUCTURAL ASSESSMENT TECHNIQUES	15
	2.3.1. Qualitative Method	17
	2.3.2. Quantitative Method	17
2.4.	SEISMIC POUNDING PHENOMENON	17
	2.4.1. Historical Events of Structural Pounding	18
	2.4.2. Types of Structural Pounding	18

	2.4.3. Factors Affecting Structural Pounding	19
	2.4.4. Pounding Prevention and Mitigation Techniques	19
	2.4.5. Seismic Pounding Analysis	20
	2.4.5.1. Stereomechanical Approach.	20
	2.4.5.2. Contact Element Approach.	21
	2.4.6. Literature Review on Seismic Pounding	24
2.5.	GAP DISTANCE BETWEEN ADJACENT BUILDINGS	25
	2.5.1. International and Local Code Requirements	25
	2.5.1.1. Eurocode-8 Requirements.	26
	2.5.1.2. Uniform Building Code (UBC-97) Requirements.	26
	2.5.1.3. Egyptian Code (ECP) Requirements.	27
	2.5.2. Additional Methods	27
	2.5.2.1. Filiatrault Method.	29
	2.5.2.2. Kasai Method.	29
	2.5.2.3. Penzien Method.2.5.2.4. Lopez Method.	30 30
	•	
СНАР	PTER 3: NUMERICAL MODELING	41
3.1.	Introduction	41
3.2.	PARAMETRIC STUDY	41
	3.2.1. Test Matrix	42
	3.2.2. Earthquake Records	43
3.3.	STRUCTURE MODELING	44
	3.3.1.Half Model	44
	3.3.2. Non Linear Modeling	45
	3.3.2.1. Constitutive Models	45
	3.3.2.2. Unloading Models	45
	3.3.2.3. Plastic Hinges' Models	46
3.4.	PROPERTIES OF BUILDINGS	50
	3.4.1. Damping and Mass	50
	3.4.2. Eigen-value and Eigen-vector Analysis	51
	3.4.3. Nonlinear Pushover Analysis	52
	3.4.4. Nonlinear Time History Analysis	53
СНАР	TER 4 : TIME HISTORY ANALYSIS RESULTS	75
4.1.	NONLINEAR TIME HISTORY ANALYSIS RESULTS	75
- 7.1.		75 75
	4.1.1. Displacement Results	75 76
	/LL / Raca Shaar Paculte	16

4.2.	COMMENTARY ON RESULTS	76
4.3.	FRAGILITY CURVES AND PERFORMANCE ASSESSMENT	76
4.4.	OBSERVATIONS AND DISCUSSIONS	77
СНАР	TER 5 : SEISMIC POUNDING PREVENTION FOR M	IID-RISE FLAT
SL	AB BUILDINGS	93
5.1.	EXPECTED POUNDING SCENARIOS	93
	5.1.1. Scenario 1	93
	5.1.2. Scenario 2	93
	5.1.3. Scenario 3	94
	5.1.4. Scenario 4	94
5.2.	SEISMIC JOINT CALCULATION	94
	5.2.1. Scenario 1	94
	5.2.2. Scenario 2	95
	5.2.3. Scenario 3	95
5.3.	ECP GAP DISTANCE REQUIREMENTS	95
5.4.	EVALUATION OF ECP GAP DISTANCE REQUIREMENTS USING F	RAGILITY CURVES
		96
5.5.	OBSERVATIONS AND DISCUSSIONS	97
CHAP	ΓER 6 : SUMMARY AND CONCLUSION	125
6.1.	SUMMARY	125
6.2.	Conclusions	126
6.3.	Contribution	126
6.4.	RECOMMENDATION FOR FUTURE WORK	127
REFE	RENCES	129
APPEN	NDICES	135
Appi	endix (A): Nonlinear Time History Analysis Lateral Dri	FT DIAGRAMS 135
Appi	ENDIX (B): GAP DISTANCE BETWEEN ADJACENT BUILDINGS	170

List of Tables

Table 2.1: Values for δ and β for different Newmark methods	39
Table 2.2: Structure performance level limits for concrete walls	39
Table 3.1: Parametric buildings under consideration	70
Table 3.2: Columns sections dimensions for 10 storey building	70
Table 3.3: Columns reinforcement details	71
Table 3.4: Modal properties differences between half and full model for 10 s	torey
building	71
Table 3.5: Building period using modal analysis and ECP201	71
Table 3.6: Time step, total number of steps, Earthquake duration, and Analysis duration	cation
for earthquake records used in this thesis	72
Table 4.1: Maximum absolute roof drift for 6 storey building	83
Table 4.2: Maximum absolute roof drift for 8 storey building	84
Table 4.3: Maximum absolute roof drift for 10 storey building	84
Table 4.4: Damage state for 8 storey building of 0.25g peak ground acceleration	
Table 4.5: Maximum absolute base shear for 6 storey building	85
Table 4.6: Maximum absolute base shear for 8 storey building	86
Table 4.7: Maximum absolute base shear for 10 storey building	
Table 4.8: Percentage of maximum base shear to building seismic weight for 6 s	
building	87
Table 4.9: Percentage of maximum base shear to building seismic weight for 8 s building	storey
building	87
Table 4.10: Percentage of maximum base shear to building seismic weight for 10 s	•
building	88
Table 4.11: Percentage of the maximum absolute lateral roof drift to the building h	
for the 6 storey building	
Table 4.12: Percentage of the maximum absolute lateral roof drift to the building h	ieight
for the 8 storey building	
Table 4.13: Percentage of the maximum absolute lateral roof drift to the building h	
for the 10 storey building	
Table 4.14: Percentage of the maximum absolute lateral roof drift to the building h	
for the three parametric buildings	
Table 5.1: Maximum lateral displacement for pounding scenario 1, case 1	
Table 5.2: Maximum lateral displacement for pounding scenario 1, case 2	
Table 5.3: Maximum lateral displacement for pounding scenario 2, case 1	
Table 5.4: Maximum lateral displacement for pounding scenario 2, case 2	
Table 5.5: Maximum lateral displacement for pounding scenario 3, case 1	
Table 5.6: Maximum lateral displacement for pounding scenario 3, case 2	
Table 5.8: ECP linear response spectrum requirements for pounding scenarios 3	
Table 5.8. ECP requirements for pounding scenario 1 for nonlinear approach	
Table 5.10: ECP requirements for pounding scenario 2 for nonlinear approach	
Table 5.11: ECP requirements for pounding scenario 3 for nonlinear approach	
Table 5.12: Summary of scenario 1 exact gap distance and gap distance calcu	
according to SRSS rule	
Table 5.13: Summary of scenario 2 exact gap distance and gap distance calcu	
according to SRSS rule	
	1 1 0

Table 5.14: Summary of scenario	io 3 exact	gap dis	stance a	and gap	dis dis	tance calcu	lated
according to SRSS ru	le						116
Table 5.15: Maximum displace	ement for	exact,	linear	ECP,	and	nonlinear	ECP
requirements for pour	nding scena	ario 1					117
Table 5.16: Maximum displace	ement for	exact,	linear	ECP,	and	nonlinear	ECP
requirements for pour	nding scena	ario 2					118
Table 5.17: Maximum displace	ement for	exact,	linear	ECP,	and	nonlinear	ECP
requirements for pour	nding scena	ario 3					119
Table 5.18: Maximum displacement	ent for all p	ounding	g scenai	rios			120

List of Figures

Figure 2.1: Equal displacement rule	31
Figure 2.2: Equal energy rule	31
Figure 2.3: Capacity curve (ATC-40, 1996)	32
Figure 2.4: Idealized capacity curve	
Figure 2.5: Conversion of MDOF system to ESDOF system	32
Figure 2.6: Conversion of elastic response spectrum to ADRS format	
Figure 2.7: Equivalent viscous damping (ATC-40, 1996)	
Figure 2.8: performance point representation	
Figure 2.9: Steps to perform DCM (ATC-40, 1996)	
Figure 2.10: Lumped mass assumption for dynamic analysis	
Figure 2.11: Acceleration variation during a time step	34
Figure 2.12: Newmark acceleration assumptions	35
Figure 2.13: Structure performance levels (Fajfar et al., 2004)	35
Figure 2.14: Using pushover analysis to study structure performance level	35
Figure 2.15: Acceleration response spectrum of Mexico City earthquake with diffe	
damping ratios	
Figure 2.16: Base isolation period elongation principle	36
Figure 2.17: Stereomechanical theory of impact	36
Figure 2.18: Experimental method to calculate coefficient of restitution	37
Figure 2.19: General concept of contact element approach	37
Figure 2.20: Linear elastic spring properties	37
Figure 2.21: Linear viscoelastic model properties	38
Figure 2.22: Modified viscoelastic model properties	38
Figure 2.23: Hertz model properties	38
Figure 2.24: Modified Hertz damped model properties	
Figure 2.25: Correlation factor of Lopez method	39
Figure 3.1: Buildings geometric information. (a) Typical building plan. (b) Colu	
distribution. (c) Elevation of 6 storey building. (d) Elevation of 8 st	
building. (e) Elevation of 10 storey building	
Figure 3.2: Scaled earthquake records adopted by this study. (a) El Centro 1940	` ′
Imperial Valley 1979. (c) Kern 1952. (d) Kobe 1995. (e) Landers 1992.	. ,
Loma Prieta 1989. (g) Morgan Hill 1984. (h) North Palm 1986	
Northridge 1994. (j) Tabas 1974.	
Figure 3.3: Response spectrum for earthquake records adopted by this study	
Earthquake records of group 1. (b) earthquake records of group 2	
Figure 3.4: Nodal degrees of freedom	
Figure 3.5: Simplification of full model into half model	
Figure 3.6: Concrete stress-strain curve	
Figure 3.7: Reinforcing steel stress-strain curve	
Figure 3.8: Takeda hysteresis model	
Figure 3.9: Kinematic hysteresis model	
Figure 3.10: Possible plastic hinges locations	
Figure 3.11: Idealized moment-curvature response	
Figure 3.12: Beams plastic hinge properties	
Figure 3.13: Independent moment curvature relationship for columns	
Figure 3.14: Generalized interaction diagram for reinforced concrete section u	
uniaxial moment	64