Amyloidosis : Recent Trends and Updates in Diagnosis and Treatment

Protocol of Essay

Submitted for partial fulfillment of Master Degree in Dermatology, venereology and Andrology

by
Dalia El-Sayed El-Araby Makled

M.B.B.Ch

Under Supervision of

Prof. Dr. Adel A. Halim Emam

Professor of Dermatology, Venereology and Andrology

Faculty of Medicine – Ain Shams University

Prof. Dr. Heba Mahmoud El-Sayed Diab

Professor of Dermatology, Venereology and Andrology

Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

الداء النشواني: الاتجاهات الحديثة وتحديثات من التشخيص والعلاج رسالة

توطئة للحصول على درجة الماجستير في الأمراض الجلدية, التناسلية والذكورة

مقدمة من الطبيبة / داليا السيد العربي مقلد بكالوريوس الطب والجراحة _ جامعة عين شمس

تحت إشراف

الأستاذ الدكتور / عادل أحمد حليم إمام

أستاذ الأمراض الجلدية و التناسلية و الذكورة كلية الطب – جامعة عين شمس

الأستاذة الدكتورة / هبة محمود السيد دياب

أستاذ الأمراض الجلدية و التناسلية و الذكورة كلية الطب _ جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٦

سورة البقرة الآية: ٣٢

First, thanks to ALLAH for helping me to accomplish this work.

I would like to express my deepest gratitude and sincerest appreciation to Prof. Dr. Adel A. Halim Emam, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for his guidance, support and supervision throughout the study.

I am also much grateful to Prof. Dr. Heba Mahmoud El Sayed Diab, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her continuous supervision and support.

Last but not least I would like to express my deep thanks and gratitude to every member in my Family and my Colleagues for their help and advice, hoping them a good health.

Dalia El-Sayed Makled

List of Content

Subjects	Page
	-
• List of abbreviation	
• List of figures	
• List of tables	VI
• Introduction	1
• Aim of the Study	5
Review of literature	•••••
Chapter 1: Historical Developments And Fibrillogeness	is6
Historical developments	
Fibillogenesis	
Chapter 2: Classification, Tissue Tropism, Cytotoxicity	
Diagnosis Of Amyloidosis	14
Amyloidosis classification	14
Tissue tropism	18
Cytotoxicity	20
Tissue dysfunction	
Kidney and urinary tract amyloidosis	
Cardiac amyloidosis	
Amyloidosis of the gastrointestinal tract and liver	
Amyloidosis of the lung	
Peripheral nerve amyloidosis	
Soft tissue and joint amyloidosis	
Cutaneous amyloidosis	
Diagnosis of amyloidosis	
Biopsy	
Stains	
Electron microscopy	
Determination of the type of amyloidosis	
Chapter 3: Cutaneous Amyloidosis and Updates	
Cutaneous amyloidosis	
Cutaneous amyloidosis as a manifestation of syste	
amyloidosis	
Localized cutaneous amyloidosis	
Keratinic primary localized amyloidosis (kplca):.	
Nodular localized primary cutaneous amyloidosis	
Rare variants:	
• bullous variant	55

∠List of Contents

	Poikiloderma-like cutaneous amyloidosis60
	Rare cases:64
	 Amyloidosis of the external auditory canal (eac).64
	 Primary cutaneous amyloidosis of the genitalia65
	Secondary amyloidosis associated with various disorders 67
	Health-related quality of life in patients with primary
	cutaneous amyloidosis70
	Pruritus70
	Treatment71
•	Summary113
•	References118
•	Arabic summary

List of Abbreviations

5-HT	5-hydroxytryptamine
AApoAI	Apolipoprotein A-I
AApoAII	Apolipoprotein A-II
ACD	Amyloidosis cutis dyschromia
AFA	Abdominal fat aspiration
AFib	Fibrinogen a α-chain
AGel	Gelsolin.
AL	Amyloid light chains
ALys	Lysozyme.
anti-SAP	Anti serum amyloid p
ASCT	Autologous bone marrow stem-cell transplantation
Aß2M	Amyloid beta-2 microglobulin
ATTR	Amyloid beta-2 interoglobum Amyloid transports thyroxine and retinol
ß2-M	B2-microglobulin
CA	Cutaneous amyloidosis
CAA	Cerebral amyloid angiopathy
CKs	Cytokeratins
CO2	Carbon dioxide
CO2	Carboxy-pyrrolidin-hexanoyl-pyrrolidine-carboxylic
СРНРС	acid
CREST	Calcinosis, raynaud phenomenon, esophageal
CDD	motility disorders, sclerodactyly, and tangiectasia
CRP	C-reactive protein
DCs	Dendritic cells
DFLC	Difference between involved and uninvolved free light chain
DLQI	Dermatology life quality index.
DMSO	Dimethyl sulfoxide
EAC	External auditory canal
EBV	Epstein-barr virus.
EGCG	Epigallocatechin-3-gallate
ER	Endoplasmic reticulum
FAP	Familial amyloidotic polyneuropathy
FFPE	Formalin fixed, paraffin-embedded.
FISH	Fluorescence in situ hybridization
FLC	Free light chain
FMF	Familial mediterranean fever
FPLCA	Familial primary localized cutaneous amyloidosis
GAGs	Glycosaminoglycans

∠List of Abbreviations

H&E	Hematoxylin and eosin
HDM	High-dose melphalan
HRQoL	Health-related quality of life
HSPG	Heparan sulphate proteoglycans
Ig	Immunoglobulin.
IHC	Immunohistochemical.
IL	Interleukin
IL31RA	Interleukin-31 receptor alpha
ISA	International society of amyloidosis
kPLCA	Keratinic primary localized cutaneous amyloidosis
LA	Lichen amyloidosis
LECT2	Leukocyte chemotactic factor 2
LMD/MS	Liquid chromatography/ tandem mass spectrometry
LSG	Labial salivary gland
MA	Macular amyloidosis
MCP-1	Monocyte chemotactic protein-1
MENDs	Microscopic epidermal necrotic debris
MMP-1	Metalloproteinases 1
MTZs	Microthermal zones
NA	Nodular amyloidosis
NAFL	Non-ablative fractional laser
NB-UVB	Narrowband ultraviolet B
Nd: YAG	Neodymium-doped yttrium aluminum garnet
NLPCA	Nodular localized primary cutaneous amyloidosis
NT-proBNP	N-terminal pro-brain natriuretic peptide
OSMR	Oncostatin m receptor
OSMRβ	Oncostatin m receptor-beta
PCA	Primary cutaneous amyloidosis
PLCA	Primary localized cutaneous amyloidosis
PUVA	Psoralens ultraviolet A
RNAi	RNA interference
ROS	Reactive oxygen species.
SAA	Serum amyloid a protein
SAP	Serum amyloid p component.
SCT	Stem-cell transplantation
SPF	Sun protection factor
SS	Sjögren's syndrome
ssNMR	Solid-state nuclear magnetic resonance
T_4	Thyroxin
TEM	Transmission electron microscopy

∠List of Abbreviations

TENS	Tanscutaneous electrical nerve stimulation
ThT	Thioflavin T
TNF	Tumor necrosis factor
TNF-α	Tumor necrosis factor alpha
TTR	Transthyretin (transports thyroxine and retinol)
UV	Ultraviolet
UVB	Ultraviolet B

List of Figures

List of Figures

No.	Figure	Page
Figure (1)	Formation of amyloid material	10
Figure (2)	Amyloid in kidney	11
Figure (3)	Amyloid material by EM	12
Figure (4)	Nucleation-dependent fibril formation process	12
Figure (5)	Alignment of oligomers on heparin molecules accelerates the process of fibril formation	19
Figure (6)	Schematic representations of potential mechanisms of amyloid/lipid association	20
Figure (7)	Amyloid in tongue biopsy	28
Figure (8)	Electron micrograph of amyloid fibrils	29
Figure (9)	Immunostains for Amyloid P component in a bone marrow biopsy	31
Figure (10)	Periorbital purpura "raccoon eyes"	36
Figure (11)	68 year old male with periorbital purpura "raccoon eyes"	36
Figure (12)	Waxy appearance of intradermal amyloid deposition periorbital	37
Figure (13)	Macroglossia in 68 year old male with ecchymotic lesions	38
Figure (14)	68 year old male with nail changes	38
Figure (15)	Dialysis-related amyloidosis: Bilateral subcutaneous masses on the buttocks	40
Figure (16)	Macular amyloidosis on the upper back	43
Figure (17)	Lichen amyloidosis: hyperkeratotic papules over the extensor surface of the lower limbs with hyper pigmented skin lesions	43
Figure (18)	lichen amyloidosis (Hematoxylin-eosin (H/E) ×200 magnification)	46
Figure (19)	apple-green birefringence under polarized light (Congo red stain ×200 magnification)	47
Figure (20)	Positive CK5/6 staining in the papillary dermal deposits of macular (Immunohistochemistry ×200 magnification)	47
Figure (21)	Waxy yellow-brown plaques located over the right anterior lower leg.	49
Figure (22)	Papulo-nodular lesions on tip of nose	49
Figure (23)	Nodular cutaneous amyloidosis:	50
Figure (24)	Biphasic amyloidosis in 25-year-old Malaysian man with diffuse cutaneous dyspigmentation	52
Figure (25)	Hyperpigmented patches and macules with intermingled hypopigmented macules along with xerosis	53
Figure (26)	HE X100: amorphous eosinophilic deposits (Amyloid) in the papillary dermis	54
Figure (27)	Congo red stain: Amyloid deposits in the papillary dermas showing positive staining	55
Figure (28)	Bullous variant of lichen amyloidosis	56
Figure (29)	Histopathological findings of Bullous variant of lichen amyloidosis	57

List of Figures

No.	Figure	Page
Figure (30)	Bullous variant of nodular amyloidosis	58
Figure (31)	Histopathological findings of Bullous variant of nodular amyloidosis	59
Figure (32)	Symmetrical poikilodermatous lesions in 62-year-old man.	62
Figure (33)	Histology showing subepidermal blister with basal vacuolar changes and superficial perivascular infiltrate consisting mainly of lymphocytes (magnification x 40)	63
Figure (34)	Positive staining with Thioflavin-T in papillary dermis corresponding to hyaline deposits on light Microscopy	63
Figure (35)	Tissue biopsy taken from the EAC tumor of this case.	65
Figure (36)	A 46-year-old uncircumcised male: (A) Well-defined, yellow, waxy, infiltrated plaques. (B)Solitary haemorrhagic papule on the mid-dorsal glans.	66
Figure (37)	A 48-year-old uncircumcised male: (A) Discrete erythematous, waxy papules and nodules on the shaft of the penis. (B) Close-up view.	66
Figure (38)	Amyloid deposition secondary to Bowen's disease	69
Figure (39)	Algorithm for evaluating patients with suspected amyloidosis	72

List of Tables

No.	Tables	Page
Table (1)	Amyloid fibril proteins and their precursors in human	15
Table (2)	Clinicopathological classification of cutaneous amyloidosis based on the causative protein	34
Table (3)	Classification of PLCA based on the type of amyloid precursor	48
Table (4)	Clinical presentation of both kPLCA and NLPCA	51
Table (5)	Comparison between Poikiloderma-like Cutaneous Amyloidosis and ACD	64
Table (6)	Conventional Systemic Chemotherapy Options for AL Amyloidosis	74

Introduction

Amyloidosis is a generic term referring to abnormal extracellular deposition of heterogenic, misfolded, proteinaceous substances. They are composed of one of a family of biochemically unrelated proteins. These proteins are deposited in the form of insoluble oligomeric and polymeric protein fibrils in various tissues leading to architectural and functional changes of tissue (*Kaltoft et al., 2013 and Bouaity et al., 2014*).

The description of the autopsy of a young man in 1639 by Nicolas Fonteyn, a Dutch physician and poet who lived in Amsterdam, was probably the first patient reported with systemic amyloidosis. The term ''Amyloid'' was first used in 1838 by Schleiden, a German botanist, to describe the cellulose-like substance of plants (*Touart and Sau*, 1998).

In 1854, Rudolph Virchow was one of the first to use the term amyloid for this amorphous and hyaline change in tissue because of an iodine-staining reaction similar to that of starch (amylon; Greek for origin). Although it is now known that amyloid has nothing to do with starch, the term amyloid is still used today (*Hazenberg*, 2013).

While amyloidosis has been known since the 19th century, it is only within the last few decades that our understanding of it has matured. Although it is common in south east Asia including Japan and Taiwan, it is uncommon in Europe and North America (*Quddus et al.*, 2014). The incidence of amyloidosis, although hard to calculate, is estimated to be 8 per million persons per year, in England, and accounting for 85% of all cases in developed countries (*Gertz*, 2014).

Amyloidosis typically appears in middle-age and older individuals and even, occasionally, younger persons. The risk of developing the disease is greater in people who are 50 years and older (*Terrier et al., 2008*), have a chronic infection or inflammatory disease, have a family history of amyloidosis, have multiple myeloma (about 10% of patients with multiple myeloma also develop amyloidosis) and have a kidney disease that requires dialysis for several years (*Steciuk et al., 2002*).

✓ Introduction

Amyloidosis ranges from being localized "affecting only one tissue or organ" to systemic types. Furthermore, each of these, is subclassified into primary and secondary types (*Bhat et al.*, 2010).

However, despite the morphologic similarity in different clinical settings, amyloid is heterogeneous with respect to the nature of the amyloid fibrils. Therefore, classification of amyloidosis has been controversial and difficult for a long time (*Steciuk et al.*, 2002).

Although localized cutaneous amyloidosis, in general, is not life threatening condition, it usually presents with itchy, hyperkeratotic papules and plaques. Skin becomes hyperpigmented, lichenified or, in rare variant, may develop waxy nodules that ulcerate and bleed. These disfiguring skin conditions, in addition to itching, may lead to psychosocial and emotional effects that may have a significant impact on quality of life (*Fang et al.*, 2015).

However, secondary localized cutaneous amyloidosis type is commonly associated with several skin tumors, both benign and malignant, such as squamous cell carcinoma. Which, increased the mortality rates in cases with localized cutaneous amyloidosis (*Touart and Sau, 1998*).

In contrast to localized amyloidosis, systemic amyloidosis leads to serious life threatening conditions such as: nephritic syndrome, renal failure, liver cell failure, cardiomyopathy, dyspnoea, syncope secondary to orthostatic hypotension, alternating bouts of constipation and diarrhea, splenomegaly, adrenal dysfunction, paresthesiae, peripheral neuropathy and bleeding tendency. These diseases are caused by the progressive deposition of amyloid materials in organs such as: Kidneys, liver, heart, gastrointestinal tract, adrenal glands, nerves and skin (*Hazenberg*, 2013).

Amyloidosis is a tissue-based diagnosis. Biopsy of classical mucocutaneous lesions is the procedure of first choice (*Westermark*, 1995). However, in the absence of evocative cutaneous lesions, biopsies can be done elsewhere. Abdominal subcutaneous fat, rectal, gingival or renal biopsies are thought to be useful (*Steciuk et al.*, 2002).

✓ Introduction

The available treatments depend on, the amyloidosis type and the organs affected, as well as on the patient's age, condition and personal preference, and the prognosis of amyloidosis and its life expectancy are adversely affected by this factors, too (Wechalekar et al., 2013).

While the average survival rate in familial amyloidosis is up to 15 years, the average survival rate is about 12-18 months in primary systemic and myeloma-associated amyloidosis without treatment and only about 6 months for patients with severely impaired heart function. The main cause of death is being cardiac and renal failure, and is linked to degree of plasma cell clonality and marrow infiltration (*Perfetti et al.*, 1999). Staging systems and prognostic markers have predominantly focused on cardiac markers (*Kumar et al.*, 2012).

Therapy of primary cutaneous amyloidosis (PCA) is not standardized and many treatment modalities have been used with variable success (*Maurelli et al.*, 2015). Despite the presence of various therapeutic modalities for primary cutaneous amyloidosis (PCA), none is considered curative or satisfactory (*Bandhlish et al.*, 2012), and since the disease runs a chronic course, therapeutic management remains challenging (*Kalkan et al.*, 2014).

The treatment of the disease is inadequate, even if there are several alternatives for treatment, either, conventional or novel treatments, these include: topical and systemic treatments (*Love et al.*, 2008). But As more data on the pathophysiology of primary localized cutaneous amyloidosis (PLCA) becomes available, new and more targeted treatments can be used for this condition (*Yew and Tey*, 2014).

The precursor-product concept is the current basis of treatment, thereby aiming to decrease the levels of precursor proteins in serum to normal or undetectable values. Future clinical research will be directed at stopping amyloid deposition and increasing amyloid clearance (*Hazenberg*, 2013).

There are various therapeutic modalities for PCA have been proposed for cutaneous amyloidosis that improves the cosmetic appearance of the lesions; Among these modalities, ultraviolet light therapy Such as ultraviolet (UV) A1 phototherapy (*Maurelli et al.*, 2015), narrowband ultraviolet B (NB-UVB) phototherapy and

✓ Introduction

photochemotherapy (*Lee et al.*, 2014). And physical therapeutic options such as: surgical excision, cryotherapy, dermabrasion (*Wong*, 1990), curettage, electro curettage and electrodessication (*Aoki and Kawana*, 2009).

Unfortunately, however, the recurrence rate in certain types of cutaneous amyloidosis is high; thus, the need for new approaches for treatment options (*Norisugi et al.*, 2014).

There are many successful laser treatments include: carbon dioxide laser (*Esmat et al.*, 2015), pulsed dye laser (*Sawamura et al.*, 2005), frequency-doubled Q-switched yttrium aluminum garnet (Nd: YAG) laser (*Liu*, 2000), Recently, fractional ablative 2,940nm Erbium: yttrium aluminum garnet (YAG) laser (*Anitha and Mysore*, 2012) And non-ablative fractional 1,550nm Yttrium/Erbium fiber laser (NAFL) used ,too (*Panchaprateep et al.*, 2015).

In addition, this technology shows a clinical outcome equivalent to ablative fractional laser with a more favorable safety profile, especially in darker skin type (*Lee et al.*, 2014).

In general, there are no preventive measures for amyloidosis. However, the secondary forms of amyloidosis could be prevented by treating the underlying diseases. In addition, genetic counseling can be beneficial in prevention of familial amyloidosis.