

Ain Shams University Faculty of Engineering Department of Computer and Systems Engineering

Defending Attacks on Cloud Computing

By

Eman Ahmed Abd El-Azim

Bachelor of Science Degree majoring in Computer Engineering – College
of Engineering – Qatar University, 2008

A THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

DEPARTMENT OF COMPUTER AND SYSTEMS ENGINEERING

Supervised By
Prof. Dr./ Ayman Mohammad Bahaa-Eldin
Dr./ Mohammed Ali Sobh
Dr./ Amin Abdul Wahab Sorrour

Cairo, Egypt
2017
© Eman Ahmed Abd El-Azim, 2017

Faculty of Engineering

Department of Computer and Systems Engineering

Name : Eman Ahmed Abd El-Azim

Thesis : Defending Attacks on Cloud Computing

Degree : Master of Science in Electrical Engineering -

Computer and Systems Engineering

Examiners Committee

Name, Title, and Affiliate	Signature	
Prof. Dr./ Samy Sayed Abdo Ghoniemy		
Computer Systems		
British University, Cairo, Egypt (Examine	er)	
Prof. Dr./ Hoda Korashy Mohamed Ismail		
Computer and Systems Engineering		
Ain Shams University, Cairo, Egypt (Examine	er)	
Prof. Dr./ Ayman Mohammad Bahaa-Eldin		
Computer and Systems Engineering		
Ain Shams University, Cairo, Egypt (Supervi	sor)	
Dr./ Mohammed Ali Sobh		
Computer and Systems Engineering		
Ain Shams University, Cairo, Egypt (Supervi	sor)	

Date: / /

Abstract

Eman Ahmed Abd El-Azim

Defending Attacks on Cloud Computing

Master of Science in Electric Engineering – Computer and Systems

Engineering Dissertation

Ain Shams University, 2017

Malwares are increasing rapidly. The nature of distribution and effects of malwares attacking several applications requires a real-time response. Therefore, a high performance detection platform is required. In this thesis, Hadoop is utilized to perform static binary search and detection for malwares and viruses in portable executable files deployed mainly on the cloud. Hadoop was chosen as it is a software platform that allows designing applications capable of handling huge data amounts in a parallel manner in large clusters. The thesis presents an approach used to map the portable executable files to Hadoop compatible files. The Boyer–Moore-Horspool Search algorithm is modified to benefit from the distribution of Hadoop. The performance of the proposed model is evaluated using a standard virus database and the system is found to outperform similar platforms.

Keywords:

Cloud computing, Security issues, Malware, Static Binary Search, BMH, Hadoop.

Acknowledgements

"In the name of Allah, the Most Gracious and the Most Merciful."

Foremost, Alhamdulillah, all praises to Allah, the
Almighty for the strengths and the blessings for the
completion of the master's thesis. This thesis is
accomplished in its current form due to the assistance
and guidance of my supervisors: Dr. Ayman
Mohammed Bahaa, Dr. Mohammed Ali Sobh and Dr.
Amin Abdul Wahab. I would like to express my sincere
gratitude to their efforts, patience, advices and
continuous support which helped me a lot throughout
this research. Sincere thanks to all my family, it would
not have been done without your support,
encouragement and prayers. Eventually, special thanks
to my father, I know your spirit is always with us.

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering in Computer and Systems Engineering

Department of Computer and Systems Engineering

The work included in this thesis was out by the author at Computer and Systems Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date : / / 2017

Signature :

Name : Eman Ahmed Abd El-Azim

Table of Contents

Abstracti
Acknowledgementsii
Statementiii
Table of Contentsiv
List of Publicationsvii
List of Tables viii
List of Figures and Illustrationsix
Chapter 1: Introduction1
1.1 Overview and Thesis Main Concern
1.2 Methodology2
1.3 Thesis Organization
Chapter 2: Background Information for Malwares Cloud Issues5
2.1 Cloud Computing Environment Overview5
2.1.1 Cloud Computing Emerging5
2.1.2 Cloud Service Delivery Models
2.1.3 Cloud Deployment Models11

2.2	Malwares13
2.2.1	Common types of Malware13
2.2.2	Malware Detection Techniques15
2.3	Malware in Cloud Environments16
2.4	Handling the Different Malware Detection Techniques by Other
Researc	chers
2.4.1	A Framework for Behaviour-Based Malware Analysis in the
Clou	d 23
2.4.2	A Retrospective Detection of Malware Attacks by Cloud
Com	puting33
2.4.3	Towards a Distributed, Self-Organizing approach to malware
detec	tion in cloud computing47
2.4.4	Malware-Detection and Kernel-Rootkit-Prevention in Cloud
Com	puting Environments54
2.4.5	Malware Analysis on the Cloud: Increased Performance,
Relia	bility, and Flexibility64
2.4.6	Hard-Detours: a Dynamic Code Analysis new Technique75
Chapte	er 3: Related Work and The Proposed System Design86
3.1	State-of- the-Art and Related Work in Malware Signature Based
Detecti	on86
3.1.1	Malware Analysis Using Hadoop and MapReduce86
3.1.2	BinaryPig: Scalable Static Binary Analysis over Hadoop88
3.2	The Proposed System Environment91
3.2.1	The Environment Used91
3.2.2	Hadoop92
3 2 3	Infected Files and Database Used 98

3.3	System General Architecture	103
3.4	Factors Affecting Performance during Testing Phase	104
3.4		
3.4	.2 Determining a Search Algorithm	105
3.4	.3 Hadoop File-Size	112
3.4	.4 Database organization and location	115
Chap	ter 4: Results and Discussion	117
4.1	The System Architecture Details and Results	117
4.2 Distri	Comparing the Performance of the Three Tests in Pseubuted Mode	
4.3	Running on Virtual Multi-node Cluster and Results	122
Chap	eter 5: Conclusion and Future Work	129
Refer	rences	131
Appe	endix A	141
A.1 G	General steps for running the program in Both Modes	141
ىتخلص	a	1
ثــــکر		5

List of Publications

- 1. Cloud Computing and Malware Issues: A survey paper
- 2. A Cloud-based Malware Detection Framework: A paper

List of Tables

Table3. 1: Test1 - Naïve Search Performance for 4 Pc	ortable Executable
Files	107
Table3. 2: Test2 - BMH Search Performance for 4 Pc	ortable Executable
Files	111
Table4. 1: System Performance Using Sequence files an	nd BMH Searching
for 10 Portable Executable Files	119
Table4. 2: Comparing the Performance of Three	Tests in Pseudo-
Distributed Mode	121
Table4. 3: System Performance on the Virtual Multi-noc	de Cluster126

List of Figures and Illustrations

Fig2. 1: Cloud Service delivery Models
Fig2. 2: Pseudo-code example for BANCOS malicious program24
Fig2. 3: Executing the malicious program in L and forcing it to act as if i
is in U25
Fig2. 4: Block diagram for executing multiple instances of the malicious
program in multiple environments. The central L aggregates the
results28
Fig2. 5: Interception and remote execution of system calls (The analyzed
program is P)30
Fig2. 6: The design block diagram35
Fig2. 7: High level working architecture36
Fig2. 8: A log file
Fig2. 9: a PDF attack38
Fig2. 10: Building file-index using MapReduce41
Fig2. 11: Building Relation-Index using MapReduce
Fig2. 12: MapReduce for searching suspicious file chains
Fig2. 13: System architecture block diagram
Fig2. 14: The flow of information and hierarchy of engines within a CRM
51
Fig2. 15: Malware Scanner Software Modules
Fig2. 16: The state transition diagram of authorized module loading63
Fig2. 17: Malware detection techniques
Fig2. 18: The general analysis flow (left) and the intra-category flow
(right)71
Fig2. 19: Win32 Architecture for Win-OS
Fig2. 20: The Function Original Code Vs its Detoured Code79

Fig2. 21: Calling Sequence before and After Interception	80
Fig2. 22: The Function Ms-Detoured Code Vs its Anti-Detoured C	Code82
Fig2. 23: Calling Sequence after applying Anti-Detouring	83
Fig2. 24: The Function Original Code Vs its Hard-Detoured Code	284
Fig3. 1: Malware detection flow	
Fig3. 2: BinaryPig General Architecture	89
Fig3. 3: Hadoop Pseudo Distributed Mode Vs Cluster Mode	94
Fig3. 4: HadoopV1 Vs HadoopV2	96
Fig3. 5: EICAR text	99
Fig3. 6: EICAR TEST File Hexadecimal Values	100
Fig3. 7: EICAR-SIGNATURE in ClamAV DB	100
Fig3. 8: EICAR detailed by disassembler tool	101
Fig3. 9: EICAR in simple assembly	
Fig3. 10: System General Architecture	103
Fig3. 11: Naïve Brute Force Algorithm	106
Fig3. 12: Test1 Detailed Jobs' Architecture	106
Fig3. 13: Performance of Test1 Searching Phase	
Fig3. 14: Boyer–Moore-Horspool Algorithm	
Fig3. 15: Test2 Detailed Jobs' Architecture	109
Fig3. 16: Performance of Test2 Searching Phase	
Fig3. 17: Scanner JOB of the Three Tests in Pseudo-Distribute	

Fig4. 1: A detailed System Architecture is shown in Figures Fig4.1a and	
Fig4.1b	118
Fig4. 2: System's Output Report for the Scanned Files	118
Fig4. 3: Performance of System Searching Phase	120
Fig4. 4: Cluster nodes	122
Fig4. 5: HDFS instances	123
Fig4. 6: Yarn Instances in the Virtual Multi-node Cluster	124
Fig4. 7: YARN Running Architecture	125
Fig4. 8: Performance of System Searching Phase	126
Fig4. 9: Pseudo-Distributed Vs. Virtual Multi-Node Cluster	127

Chapter 1: Introduction

1.1 Overview and Thesis Main Concern

Malware stands for "malicious software." It is any software program that is created to perform harmful actions or unwanted by a computer's legitimate user. It has a variety of forms as: computer viruses, which are the most familiar type, worms, spyware, adware, trojans, ransomware and Botnets.

Having Malwares spreading widely on the internet, every host faces the risks of malware attacks. Since cloud environment inherited internet properties, cloud environment is vulnerable to Malwares. Most users transfer or share a vast amount of small files across the cloud as PE files, images. Many of these files could be infected by different Malware types. Hence, a demand to make researchers study and improve different techniques for scanning of files across clouds in a fast manner. Malware-detection techniques can be commonly classified into three categories: signature-based-detection, anomaly-based-detection and code-emulation [1] [2] [3]. A further explanation is presented in the next chapter for the cloud environment, difference between Malware types, detection techniques and some efforts carried using these techniques by other researchers.

The problem of detecting Malware in cloud environment is a performance and detection accuracy problem. This thesis handled this issue by utilizing Hadoop framework to speed up the detection rate. It presents the problems faced that affect detection performance and accuracy and how it was handled. In the next section, a brief description for the detection technique chosen, the type of files used in testing, the framework used and previous efforts done by other researchers using same framework.

1.2 Methodology

The detection technique handled in this thesis is signature-based detection for binary-executable files (e.g. in MSDOS: the .exe files and in Windows: the PE-files, ...etc.). Considering the assumption that there are many of them and there is a need to process them in fast and parallel manner, hadoop platform is utilized to perform this detection. Apache Hadoop is "a free software framework for having a distributed storage and processing for huge datasets of computer-clusters" [4]. A further explanation for Hadoop architecture and versions is represented in the third chapter and its practical tests.

Researchers as [5] handled this problem using hadoop environment. But they proposed architecture of how hadoop framework uses its daemons to cooperate in scanning without further details. Other Researchers [6] emphasized how malwares have spread widely in the past few years. Where Endgame received 20M samples of malwares, McAfee receives 10M malware samples in 2012 and VirusTotal receives almost 600k unique files per day. These numbers proves how malware samples increased rapidly in the internet which needs making more studies on