AIN SHAMS UNIVERSITY

Faculty of Computer &
Information Science
Computer Science Department

DEVELOPING A HYBRID INTELLIGENT TECHNIQUE FOR MOBILE HEALTH APPLICATIONS

Thesis Submitted to the Department of Computer Science Faculty of Computer and Information Sciences, Ain Shams University

> In partial fulfillment of the requirements for the degree of Master in Computer and Information Sciences

By

Nahla Farid Abdel Maaboud Abdel Gawad

B.Sc. in Computer and Information Sciences,Computer Science Department (2009)Ain Shams University - Cairo

Under the supervision of

Prof. Dr. Abdel-Badeeh Mohamed Salem

Professor of Computer Science Computer Science Department Faculty of Computer and Information Science Ain Shams University

Prof. Dr. Mohamed Ismail Roushdy

Professor of Computer Science Computer Science Department Dean of Faculty of Computer and Information Science Ain Shams University

Dr. Bassant Mohamed El Bagoury

Lecturer in Computer Science Department, Faculty of Computer and Information Science Ain Shams University

Cairo - April 2015

Acknowledgement

First, thanks to God the most gracious who abetted and empowered me to finish this thesis.

I owe my deepest gratitude to my main supervisor, Prof. Dr. Abdel-Badeeh Salem as he always does to assist his graduate students succeed, did his best to provide feedback, comments, suggestions, and enlightening discussions throughout this research. I would like to express my special appreciation and thanks to my supervisor Prof. Dr. Mohamed Roushdy for his advices, guidance and imparting of knowledge throughout this project. Despite his tight schedule, he set aside time for discussion and presentation sessions to advance my research. I would like to thank my advisor Dr. Bassant El Bagoury for supporting me during the progress of this work, thanks for her valuable assistance and devices.

I would like to thank the dissertation committee members as well as the department of computer science, for their support.

I would like to gratefully thank my beloved sister Dr. Niveen Farid for helping, supporting and encouraging me going through this work step by step with her great advices and patience.

My deepest gratitude goes to my family for their love, support, and encouragement. Perhaps most significantly thanks to my parents for all of the sacrifices that they has made on my behalf. Without their love, prayers, support, and patience, I would not be able to finish this work.

List of Publications

- 1. Nahla Farid, Bassant Mohamed Elbagoury, Mohamed Ismail Roushdy and Abdel-Badeeh M.Salem, "Towards Intelligent Mobile Health Framework: New Trends", Proceedings of The international conference for computation and informatics, ICCI, Cairo, Egypt, pp. 348-351, 2012
- 2. Nahla Farid, Bassant Mohamed Elbagoury, Mohamed Ismail Roushdy and Abdel-Badeeh M.Salem, "A Comparative Analysis for Support Vector Machines For Stroke Patients", Proceedings of the 7th WSEAS European Computing Conference, Recent Advances in Information Science, Dubrovnik, Croatia, pp. 71-76, 2013
- 3. Nahla Farid, Bassant Mohamed ELBagoury, Mohamed Ismail Roushdy and Abdel-Badeeh M.Salem, "Utilization of Levenberg-Marquardt based Neural Network Classifier in EMG signal Classification", International conference on intelligent computing and information systems, ICICIS, Cairo, Egypt, pp. 363-368, 2013
- 4. Nahla F. Abdel Maboud, Bassant Mohamed ELBagoury, Mohamed Ismail Roushdy and Abdel-Badeeh M.Salem, "A New Hybrid Classifier for Neuromuscular Disorders Diagnoses", Egyptian Computer Science Journal (ECS), Vol. 39, pp. 86-92, 2015
- 5. Nahla F. Abdel Maboud, Bassant Mohamed ELBagoury, Mohamed Ismail Roushdy and Abdel-Badeeh M.Salem, "EMGNeu: Mobile Health Application for Neuromuscular Disorders Diagnosis", "Accepted", International Journal of Information Theories and Applications, 2015.

Abstract

Mobile Health in remote medical systems has opened up new opportunities in healthcare systems. It is a steadily growing field in telemedicine and it combines recent developments in artificial intelligence and cloud computing with telemedicine applications.

However, today's Mobile Health research still missing an intelligent remote engine for neuromuscular disorders diagnosis. Moreover, Remote patient monitoring and emergency cases need an intelligent algorithms to alert with better diagnostic decisions and fast response to patient care.

Many neuromuscular disorders that affect the nerves and muscles are hereditary and may cause death. Electromyography (EMG) is the most widely adopted clinical tool used to record and analyze myoelectric signals. EMG detects muscle response during different actions and gives useful identification of the neuromuscular disorders. Early diagnosis of these disorders through EMG signal processing and classification is necessary to help in finding out the best method of treatment of these disorders.

This thesis involves the design of a new hybrid neuromuscular disorders diagnosis system for mobile health applications based on support vector machine and artificial neural networks.

Given a collection of EMG data for normal subjects and Myopathy and Amyotrophic lateral sclerosis (ALS) patients, in this thesis a subset of these objects was used to build the classifiers and compare them to decide which classifier provides the best performance in terms of classification accuracy.

The most important step is to extract appropriate features from the EMG signals. At first the EMG signals were analyzed using discrete wavelet transform and then statistical features like root mean square, mean absolute value, zero crossing, slope sign change and standard deviation were calculated from the processed signal and used as inputs to the both classifiers.

A comparison was made between support vector machine classifiers accuracies with each feature to select the highest accuracy classifier. It was found that support vector machine classifier with radial basis kernel function achieved the best accuracy in classifying amyotrophic lateral sclerosis disorder using root mean square feature with accuracy of 98%.

Another comparison was made between artificial neural network classifiers with the same features. This comparison led to building artificial neural network classifier with 9 hidden neurons using combined five features as inputs to classify myopathy disorder with accuracy of 86.6%.

In this thesis, a mobile health application for ALS neuromuscular disorder diagnosis was developed. The application enables the patient to review his EMG signal. It also notifies the patient and his physician that the application has detected ALS disorder for that patient. The application enables the physician to send recommendations to the patient.

Table of Contents

List of	Figures	iii
List of	Tables	v
List of	Abbreviations	vi
Chapte	er 1 Introduction	
1.1	Motivation for the research	1
1.2	Thesis Objectives	3
1.3	Contributions	3
1.4	Methodology	4
1.5	Thesis Organization	5
Chapte	er 2 A study on intelligent techniques for mobile health application	ons
2.1	Mobile Health (m-Health)	7
2.2	Intelligent Techniques for mobile health	10
2.3	Mobile Health Applications	14
Chapte	er 3 Electromyography Signal Processing	
3.1	Medical Aspects of EMG signal	16
3.2	EMG Signal Processing.	18
3	3.2.1 Wavelet Analysis	18
3	3.2.2 Higher Order Statistics (HOS)	19
3.3	EMG Signal Feature Extraction Approaches	21
3	3.3.1 Spectral Approaches	22
3	3.3.2 Temporal Approaches	25
Chapte	er 4 Machine Learning for Electromyography Signal Classificati	ion
4.1	Support Vector Machines (SVMs)	30
4	4.1.1 SVM Kernels	31
4.2	Artificial Neural Networks	33
4	4.2.1 Levenberg-Marquardt (LM) Training Algorithm	34

4.3	Related Work	.37
4.4	Experiments	43
4.	.4.1 Experimental Dataset	43
4.	.4.2 Physical Actions Classification	14
4.	.4.3 Experimental Results and Discussion	45
4.5	Conclusion	49
Chapter	5 Mobile-Health application for neuromuscular disorders diagnosis	
5.1	Neuromuscular Disorders	50
5.2	The Proposed Mobile Health System Architecture for Patient Emergency	51
5.3	EMG Wireless Sensors	52
5.4	EMG Signal Acquisitions	53
5.5	EMG Signal Processing	54
5.6	Feature Extraction	56
5.7	Build the Hybrid Classifier	57
5.	.7.1 ALS Classifier	57
5.	.7.2 MYO Classifier	58
5.8	Experimental Results and Discussion.	59
5.9	Developing the Mobile Health Application	60
5.	.9.1 Development Environment	60
5.	.9.2 Signal Processing and Classification Implementation	61
5.	.9.3 Application Modules	61
5.10	Conclusion	64
Chapter	6 Summary, Conclusion and Future Work	
6.1	Summary	66
6.2	Conclusion.	68
6.3	Future Work	68
Referen	ces	69
Glossary	y	75

List of Figures

Figure	1.1: Proposed methodology for developing a hybrid intelligent technique for
	m-Health application5
Figure	2.1: WBAN consisting of various wireless biosensors
Figure	2.2: A typical m-Health with WBAN architecture
Figure	2.3: Smartphone ECG Processing Test Bed
Figure	2.4: The architecture of iBoSen
Figure	2.5: Screenshot of INNSULIN project
Figure	2.6: User Interface of diabetes diagnosis system
Figure	3.1: The raw EMG recording from biceps brachii muscle
Figure	3.2: Standard processing flow diagram for real-time biofeedback
Figure	3.3: Feature Extraction Approaches
Figure	4.1: Three-layer multilayer perceptron neural network
Figure	4.2: Pseudo code of forward and backward computation implementing LM
	algorithm [61]36
Figure	4.3: Block diagram for training using LM algorithm [61] 37
Figure	4.4: EMG electrodes placement
Figure	4.5: Architecture of SVM classifier with 8 EMG channels as inputs 44
Figure	4.6: Architecture of Artificial Neural Network
Figure	4.7: Classification accuracies for RBF kernel with different sigma values
	for Kneeing and Pulling actions
Figure	4.8: (a) Error histogram and (b) Performance Plot for Clapping

Figure 4.9: (a) Error histogram and (b) Performance Plot for Kneeing
and Pulling47
Figure 4.10: (a) Error histogram and (b) Performance Plot for Hammering
and Header47
Figure 4.11: (a) Error histogram and (b) Performance Plot for Running
and Hugging48
Figure 4.12: (a) Error histogram and (b) Performance Plot for Elbowing
and Slapping48
Figure 5.1: Proposed system architecture for patient emergency 52
Figure 5.2: Wireless EMG sensors: (a) Norixon DTS (b) Trigno TM 53
Figure 5.3: EMG Signal of brachial biceps from normal subject subdivided into
frames
Figure 5.4: Raw EMG signal of (a) Normal Subject (b) Myopathy Patient (c) ALS
Patient and Wavelet Transform of raw EMG of (d) Normal Subject
(e) Myopathy Patient (f) ALS Patient 55
Figure 5.5: Architecture of the proposed technique for selecting classifiers 57
Figure 5.6: Classifying new analyzed frame of EMG signal
Figure 5.7: Major processes flow for EMG signal classification
Figure 5.8: Profile and Settings Module Screenshot
Figure 5.9: Physician and Patient data module Screenshot
Figure 5.10: Signal Display and Alert Module Screenshot
Figure 5.11: Send Recommendations Module Screenshot

List of Tables

Table 2.1: Examples of famous mobile health applications
Table 3.1: List of 324 wavelet functions from 15 wavelet families
Table 4.1: Summary of different EMG classification systems
Table 4.2: Eight channels samples readings for actions
Table 4.3: Experimental Results of Applying SVM with different Kernels on normal and aggressive actions
Table 4.4: Comparison between Classification Performances of SVM and LM-ANN on normal and aggressive actions
Table 5.1: Comparison between SVM classifiers with each feature for ALS, MYO and NOR diagnosis
Table 5.2: Comparison between ANN with different No. of hidden neurons for ALS, MYO and NOR diagnosis
Table 5.3: Specification of Laptop

List of Abbreviations

ALS: Amyotrophic lateral sclerosis

ANN: Artificial Neural Network

AR: Autoregressive

BCU: Body Control Unit

BP: Back Propagation Algorithm

BPNN: Back Propagation Neural Network

CWT: Continuous Wavelet Transform

DTS: Direct Transmission System

DWT: Discrete Wavelet Transform

ECG: Electrocardiography

ELM: Extreme Learning Machine

EMG: Electromyography

FFT: Fast Fourier Transform

FL: Fuzzy Logic

GA: Genetic Algorithm

HCI: Human Computer Interface

HMM: Hidden Markov Model

HOS: Higher Order Statistics

IEMG: Integrated EMG

KNN: K-Nearest Neighborhood

LDA: Linear Discriminate Analysis

LHMM: Layered HMM

LM: Levenberg-Marquardt

LR: Logistic Regression

m-Health: Mobile Health

MAV: Mean Absolute Value

MAVSLP: Mean Absolute Value Slop

MDF: Median Frequency

MLP: Multilayered Perceptron Neural Network

MNF: Mean Frequency

MODWT: Maximal Overlap Discrete Wavelet Transform

MSE: Mean Square Error

MU: Motor Unit

MUAP: Motor Unit Action Potential

MUP: Motor Unit Potential

MUPT: Motor Unit Potential Train

MYO: Myopathy

NN: Neural Network

NOR: Normal

NWPEs: Normalized Wavelet Packets Energies

PCA: Principle Component Analysis

PNN: Probabilistic Neural Network

PSO: Particle Swarm Optimization

QPC: Quadratic Phase Coupling

RBF: Radial Basis Kernel Function

RMS: Root Mean Square

SCG: Scaled Conjugate Gradient Algorithm

SD: Standard Deviation

SEMG: Surface EMG

SMA: Spectral Magnitude Averages

SMLR: Sparse Multinominal Logistic Regression

SNR: Signal to Noise Ratio

SSC: Slope Sign Change

SSI: Simple Square-Integral

STFT: Short-Time Fourier Transform

SVM: Support Vector Machine

TB: Tuberculosis

UEMG: Uterine EMG

VAR: Variance

WAMP: Willison Amplitude

WBAN: Wireless Body Area Network

WF: Wavelet Basis Function

WL: Waveform Length

WNN: Wavelet Neural Network

WPT: Wavelet Packet Transform

WT: Wavelet Transform

ZC: Zero Crossing

Chapter 1

Introduction

Mobile Health (m-Health) application is the integration of mobile computing and health monitoring which is considered as one of the main application areas for pervasive computing. Mobile health is the application of mobile computing technologies for improving communication among patients, physicians, and other health care workers. One of the main goals of using mobile technology in the health sector is to improve the quality of and access to care through treatment support, patient tracking and emergency services. So that, during emergencies, people in affected areas can use m-Health applications to report urgent health needs. Mobile health applications can also help patients manage their treatments when attention from health workers is costly, unavailable, or difficult to obtain regularly. Many m-Health applications have been developed and widely used by health professionals and patients and they played a very important rule in realtime assistive medical diagnosis. The use of those applications is getting more attention in healthcare day by day [1]. An example of such m-Health application was designed for monitoring the body's internal signals for the changes in a user's health that are life-threatening.

1.1 Motivation for the research:

Neuromuscular disorders term refers to all diseases that affect nerves and muscles. Patients with neuromuscular diseases may suffer from increased or decreased tone, loss of muscle bulk, weakness, muscle twitching, cramping, numbness and tingling, and a host of other symptoms. These diseases can also difficulty with swallowing and sometimes with breathing cause Neuromuscular disorders have six categories: Muscular Dystrophies (MD), Inflammatory Myopathies, Motor Neuron Diseases, Neuromuscular Junction Diseases, Peripheral Nerve Diseases, and other **Myopathies** [3]. AmyotrophicLateral Sclerosis (ALS, also called Lou Gehrig's disease) is one of motor neuron diseases. ALS is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, leading to paralysis of voluntary muscles. Patients with ALS may suffer from muscle weakness, especially involving the arms and legs, speech, swallowing or breathing. Patients in the later stages of the disease may become totally paralyzed [4]. Currently, there are approximately 25,000 patients with ALS in the USA, with a median age of onset of 55 years [5]. On the other hand, one of the most common musculoskeletal diseases is myopathy which causes the weakness of the muscles. Muscle cramps, tautness and spasm are also associated with myopathy. One of the possible ways to investigate the indispensable features of the ALS and myopathy diseases independently in individuals is to analyze the electromyography (EMG) signals that are basically electrical signals originated from the muscles [26].

EMG is a clinical investigation which records and analyzes myoelectric signals [6]. It detects the electrical activity associated with muscle contraction and forms a valuable neurophysiological test for the assessment of neuromuscular disorders [13]. It is the most widely adopted clinical tool in diagnosis of Neuropathy, Muscle Diseases and Motor Neuron Disease. It is a very useful tool for neurology and physical medicine and rehabilitation specialists as it plays a major role in physiological investigations and clinical examinations for either the study of motor control or the diagnosis of neuromuscular disorders like ALS [7]. EMG signal based research is ongoing for the development of simple, robust, user friendly, efficient interfacing devices/systems for the disabled. The advancement can be observed in the area of robotic devices, prosthesis limb, exoskeleton, wearable computer, I/O for virtual reality games and physical exercise equipments [16].

Early detection and diagnosis of neuromuscular disorders by clinical examination and laboratory tests is essential for their management through prenatal diagnosis