CD 47 Assessment In Immune Thrombocytopenic Purpura

Thesis

Submitted for partial fulfillment of M.D. degree **in Internal Medicine**

By:

Nour Elhuda Hussien Abdalla

(M.B., B.Ch)-(M.Sc.)

Supervised by

Prof. Dr. Abdel Rahman Abdel Hamid Soliman

Professor of Internal medicine and Haematology Faculty of Medicine- Ain Shams University

Prof. Dr. Hanaa Mohmed Afifi

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Assistant Prof. Dr. Gihan Mohamed Kamal Shams El- Din

Assistant professor of Internal Medicine and Hematology Faculty of Medicine- Ain shams University

Dr. Mohamed Hamdy Attya

Lecturer of Internal medicine and Haematology Faculty of Medicine - Ain Shams University

Dr. Walaa Ali Elsalakawy

Lecturer of Internal medicine and Haematology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Abdel Rahman Abdel Hamid Soliman,** Professor of Internal medicine and Haematology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Hanaa Mohmed Afifi,** Professor of Clinical Pathology, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I would like to express my deepest gratitude and sincere thanks to **Assistant Prof. Dr. Gihan Mohamed Kamal Shams El-Din**, Assistant professor of Internal Medicine and Hematology faculty of medicine, Ain Shams University, for suggesting and planning this work, her instructive supervision, continuous guidance, unlimited help and unfailing support, valuable instructions throughout the work and final revision of the manuscript.

I owe much to. **Dr. Mohamed Hamdy Attya**, Lecturer of Internal medicine and Haematology Faculty of Medicine - Ain Shams University.

I am obliged to **Dr. Walaa Ali Elsalakawy**, Lecturer of Internal medicine and Haematology Faculty of Medicine – Ain Shams University, who offered her great help and her professional experience for completion of this work.

Nour Elhuda Hussien Abdalla

Contents

List of Abbreviations	i
List of Tables	V
List of Figures	vii
Introduction and Aim of the Work	1
Review of Literature Chapter 1 * Immune Thrombcytopnic Purpura	
Chapter 2 * CD47 in Health and Disease	83
Patients and Methods	134
Results	143
Discussion	162
Summary	171
Recommendations	173
References	174
Arabic Summary	

List of Abbreviations

ADCC : Antibody-dependent cellular cytotoxicity ADCP : Antibody-dependent cellular phagocytosis

AEA : Anti-erythrocyte autoantibodies

AIF : Apoptosis-inducing factor

AIHA : Autoimmune hemolytic anemia ALL : Acute lymphoblastic leukemia

ALPS : Autoimmune lymphoproliferative syndrome

AML : Acute myeloid leukemia

AN : Absolute number ANA : Antinuclear antibody Anti-D : anti-D immunoglobulin

Anti-LKM: Anti –liver- kidney-microsomal anti body

APL : Acute promyelocytic leukemia
 ASH : American Society of Hematology
 B-CLL : B-cell chronic lymphocytic leukemia

Beta-TG : beta-thromboglobulin BUN : Blood urea nitrogen

C AMP
 Cyclic adenosine monophosphate
 Cag A
 Cytotoxin associated gene A
 CBC
 Complete blood cell count
 CBD
 C- terminal cell binding
 CD
 Cluster of differentionation
 CLL
 Chronic lymphocytic leukemia

CMV : Cytomegaloviurs

CNS : Central nervous system
CPB : Cardiopulmonary by pass

CR : Complete remission

Cr : Creatinine

CRs : Complement receptors CT : Computed tomography

CVID : Common variable immunodeficiency

DCs : Denderitic cells

DDAbs : Drug dependant platelet antibodies

List of Abbreviations (Cont.)

DDAVP : Desmopressin acetate

DIC : Disseminatd intravascular coagulopathy

DITP : Drugs induced thrombocytopenia DLBCL : Diffuse large B cell lymphoma

DNA : Deoxy ribonuclic acid EBV : Epstien Barr viurs ECG : Electrocardiogram

ESR : Erythrocyte sedmintation rate

FAK : Focal adhesion kinase

FDA : Food and Drug Administration

FL : Follicular lymphoma

G6PD : Glucose 6 phosphate dehydrogenase

GIT : Gastrointestinal tract

GPIb-IX-V: Glycoprotein Ib-IX-V complex

GPVI : Glycoprotein VI Hb : Haemoglobin HCV : Hepatitis C viurs

HIT : Heparin-induced thrombocytopenia

HITT : Heparin-induced thrombocytopenia and

thrombosis

HIV : Human immune deficiency viurs

H-Pylori : Helicobacter pylori

HRQoL : Health-related quality of life

I DCs : Immature human monocyte derived dendertic

cell

IAP : Integrin-associated proteinICH : Intracrainal hemorrage

IFN-α : Interferon alfa
 IgA : Immunoglobulin A
 IgG : Immunoglobulin G
 IgM : Immunoglobulin M

IL : Interlukin

List of Abbreviations (Cont.)

ITAM : Immunoreceptor tyrosine-based activation

motif

ITP : Immune thrombocytopenic purpura.

IVH : Intravascular hemolysis

IVIG : Intravenous immunoglobulin.IWG : International Working Group

Lab. : Laboratory

LDH : Lactate dehydrogenase MCL : Mantel cell lymphoma

MDS : Myelodysplastic syndrome

MHC : Major histocompatibility complex

MMF : Mycophenolate mofetil

MR : Mannose receptor

MRD : Minimal residual disease
 MRI : Magnetic resonance imaging
 mRNA : Messenger ribonuclic acid
 NAD : NO abnormality detected
 NHL : Non-Hodgkin lymphoma

NMMIIA : Non muscle myosin type II A

NO : Nitric oxide

P I 3 : Phosphoinositide 3 kinase

PAMPs : Pathogen-associated molecular patterns PARC-ITP : Pediatric and Adult Registry of Chronic ITP

PBMCs : Peripheral blood mononuclear cells

PKA : Protein kinase A PKC : protein kinase C

PLT : platelets

PRRs : Pattern recognition receptors

PT : Prothrombin time

PTT : Partial thromboplastin time

RBCs : Red blood cells RF : Rheumatoid factor

RGD : Arginine glycine aspartic acid

List of Abbreviations (Cont.)

RhAG : Rh associated glycoprotein ROS : Reactive oxygen species

RP% : Percentage number

SIRP : Signal regulatory protein $SIRP\alpha$: Signal-regulatory protein α SLE : Systemic lupus erythematosus

T Reg : Regulatory T- cells

TAMs : Tumour-associated macrophages

Th : T-helper cells

TLC : Total leucocyte countTNFα : Tumor-necrosis-factor-α

TPO : Thrombopoietin

TPO-R : Thrombopoietin Receptor agonist

TSP: Thrombospondin
TSP-1: Thrombospondin-1
UFH: Unfractionated heparin
vWF: von Willebrand factor

WAS : Wiskott-Aldrich syndrome

WAS P : Wiskott-Aldrich syndrome protien

WBCs : White blood cells

List of tables

Table	Title	Page
1	Mechanism of development of drug	48
	dependent platelet antibodies	
2	Difference between classic DITP and	52
	HIT	
3	Foods, beverages and natural products	53
	associated with definite evidence for the	
	development of drug-induced immune	
	thrombocytopenia	
4	First-line agents for the management of	68
	primary ITP	
5	American Society of Hematology (ASH)	74
	recommendations for use of second line	
	therapy in children and adults with ITP	1.10
6	Demographic data of the studied groups	143
	and controls as regard age and lab. Data	1.4.4
7	Comparison between the studied groups	144
0	as regard gender	1.45
8	Comparison between the studied groups	145
0	as regard age	1.4.0
9	Comparison between the studied groups	146
10	as regard c/o	1.47
10	Comparison between cases and controls	147
11	as regard all laboratory data	149
11	Comparison between the studied groups	149
12	and controls as regard (CD47)	151
12	Comparison between the studied groups and controls as regard platelet count	131
13	Comparison between patients of group	152
13	III as regard response to treatment	132
14	Comparison between platelets before	153
17	treatment and after 3 months of	133
	treatment within patients of group III	
	a cament within patients of group III	

List of tables (Cont.)

Table	Title	Page
15	Comparison between patients of group	154
	III and controls as regard CD47 and	
	platelets	
16	Comparison between the studied groups	155
	as regard condition and number of	
	relapses	
17	Correlation between CD47 versus	156
	variables of group I	
18	Correlation between CD47 versus	157
	variables of group II	
19	Correlation between CD47 versus	158
	variables of group III	
20	Correlation between CD47 versus the	159
	condition in the total cases	
21	Correlation between CD47 versus the	160
	gender	
22	Validity of CD47 in prediction of	161
	outcome	

List of Figures

Fig.	Title	Page
1	Image from blood smear Gimes stained	4
	showing platelets surrounded by red blood	
	cells	
2	Platelets derive from blood stem cells	6
3	3D Rendering of Platelets	7
4	Scanning electron micrograph of blood cells.	8
5	Platelet clumps in a blood smear	10
6	Diagram of the structure of a platelet.	11
7	New definitions for the phases of the disease	19
8	Schematic representation of pathophysiology of cITP.	20
9	Demonstration of three major recognition sites (A, B and C) of PA anti-GPIIb/IIIa autoantibodies.	22
10	pproach to the diagnosis and manament if a pateient with new-onset thrombocytopenia in whom drug-induced immune thrombocytopenia is suspected.	56
11	Emergency therapy and initial treatment in ITP	73
12	Structure of CD47.	74
13	Interactions of CD47.	86
14	Ligation of SIRPα will result in	88
	phosphorylation of the two ITIMS.	
15	Association of CD47 with the Rh and band	93
	3 complexes in the erythrocyte membrane	

List of Figures (Cont.)

Fig.	Title	Page
16		100
10	CD47 regulates phagocytosis of host cells by interacting with SIRP- α (a) CD47 on viable	100
	normal host cells.	
17		104
	Apoptotic cells and CD47.	104
18	Cancer cells and expression of CD47	
19	Prophagocytic signaling or inhibitory signaling.	113
20	FcγR and CR-mediated erythrophagocytosis can be down-regulated by CD47/SIRPα interaction	116
21	CD47 is more prominently expressed by disseminated lymphoma cells and that targeting CD47.	124
22	Combination strategies targeting CD47 in cancer	126
23	Assessment of CD47 by flow cytometry in new diagnosed ITP pateint.	139
24	Assessment of CD47 by flow cytometry in non-responder ITP pateint.	140
25	Assessment of CD47 by flow cytometry in responder ITP pateint.	140
26	Assessment of CD47 by flow cytometry in control.	141
27	Comparison between the studied groups as regard gender.	144
28	Comparison between the studied groups as regard age.	145
29	Comparison between the studied groups and controls as regard (CD47)	150
30	Comparison between the studied groups as regard platelet count (pre treatment and post treatment	151

List of Figures (Cont.)

Fig.	Title	Page
31	Comparison between patients of group III as	152
	regard response to treatment.	
32	Comparison between platelets before	153
	treatment and after 3 months of treatment	
	within patients of group III.	
33	Comparison between the studied groups as	155
	regard condition and number of relapses	
34	Correlation between CD47 versus number of	156
	relapses of group I	
35	Correlation between CD47 versus	157
	hemoglobin of group II	
36	Correlation between CD47 versus platelet of	158
	group III	
37	Correlation between CD47 versus the	159
	condition in the total cases	
38	ROC curve showing CD47validity as a	161
	prognostic marker in ITP cases	

Introduction

Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by low platelet counts as a result of antibody-mediated destruction of platelets. (*Cines and Blanchette*, 2002).

Platelet autoantibodies are of the immunoglobulin G (IgG) type and are most commonly directed to the glycoprotein IIb/IIIa complex. However, most patients have antibodies directed to several different platelet surface proteins. (*McMillan et al.*,2008).

Extensive research has shown that production of antiplatelet antibodies in ITP is strongly related to the presence of autoreactive T cells and an altered cytokine environment. (Cooper et al., 2007).

Platelets coated with IgG autoantibodies undergo accelerated clearance through Fcγ receptor–mediated phagocytosis by macrophages, usually in the spleen and liver. (*Cines and Blanchette*, 2002).

ITP can be treated with corticosteroids or intravenous gamma globulin (IVIG). (*Oldenborg et al.*, 2000).

In more severe cases of ITP, and in cases of tolerance to corticosteroids, splenectomy may be required to reduce platelet destruction. (*Cines and Blanchette*, 2002).

Signal regulatory protein α (SIRP α) is an immunoglobulin (Ig) superfamily member with 1 or 3 extracellular Ig domains (alternative splicing) and an intracellular tail with 2 immunoreceptor. (*Oldenborg*, 2013).

Introduction and Aim of The Work

SIRP α is expressed preferentially by neurons and myeloid cells such as neutrophils, monocytes, and monocytederived cells. (*Oldenborg et al.*, 2000).

The ligand for (SIRP α) is the cell-surface glycoprotein CD47 (integrin-associated protein, IAP), which is expressed by virtually all cells in the host. (*Oldenborg et al.*, 2002).

Interaction between target cell CD47 and (SIRP α) counteracts macrophage phagocytosis of CD47-expressing host cells.Platelets also express CD47, so inhibitory CD47/SIRP α signaling regulates normal platelet turnover and clearance of platelets in (ITP). So targeting SIRP α may be a new means of reducing platelet clearance in ITP (*Mattias et al.*, 2005).