MOLECULAR GENETIC CHARACTERIZATION OF SOME GOAT BREEDS RAISED UNDER EGYPTIAN CONDTIONS

BY AHMAD MOHAMED JNIED

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in
Agricultural Science
(Genetics)

Department of Genetics
Faculty of Agriculture
Ain Sham University

Approval Sheet

MOLECULAR GENETIC CHARACTERIZATION OF SOME GOAT BREEDS RAISED UNDER EGYPTIAN CONDTIONS

BY AHMAD MOHAMED JNIED

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

This thesis for M.Sc. degree has been approved by:
Prof. Dr. Abdel–Wahab Mohamed Hassan Prof. Emeritus of Genetics, Faculty of Agriculture, Banha University
Prof. Dr. Eman Mahmoud Fahmy
Prof. Dr. Mohamed Abdel-Salam Rashed
Date of Examination: 7/7/ 2009

MOLECULAR GENETIC CHARACTERIZATION OF SOME GOAT BREEDS RAISED UNDER EGYPTIAN CONDTIONS

BY AHMAD MOHAMED JNIED

B.Sc. Agric. Sc. (Animal Production), Aleppo University, 2004

Under the supervision of:

Prof. Dr. Mohamed Abdel-Salam Rashed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Mohamed Reda Ismail Anous

Prof. of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University

ACKNOWLEDGEMENT

Firstly, I wish to express my great and sincere gratitude to **ALLAH** who give me the prosperity and ability to achieve this work.

Great thanks to my home country, **Syria**, which gave me the opportunity to complete my post-graduate education, also thanks are forwarded to my second country **Egypt** which received me, offered all available facilities and abilities and **funded** this study.

The author wishes to express his great and sincere thanks, deepest respects and appreciations to his principle supervisor **Prof. Dr.**Mohamed Abdel-Salam Rashed for his continuous encouragement, valuable advices and for the continuous support for thesis requirements.

Sincere respects and appreciations are offered to my supervisor **Prof. Dr. Mohamed Reda Ismail Anous** for his continuous revising, help and his endless support during the progress of his study.

I cannot forget my brother **Dr. Aiman Hanafy Atta** and thank him too much for his kind help and valuable advices.

Appreciation is also expressed to **Dr. Yasser Mohamed Saad** for his role in resolving lab-work difficulties.

The author extends his sincere thanks and respect to every one of the staff of the Department of Genetics and his laboratory colleagues, especially **Dr. Hamdi Ibrahim Alsaffouri**, **Nouh Eyd Ahmed and Dr. Mahmoud Moalla Ibrahim** for their help.

Firstly and finally the author offers his family; parents, wife, coming baby, brothers and sisters his great love for their encouragement and praying for him, especially his wife for her unlimited encouragement and continuous support.

ABSTRACT

Ahmad Mohamed Jnied: Molecular Genetic Characterization of Some Goat Breeds Raised Under Egyptian Conditions. Unpublished M. Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2009.

Two Egyptian (*Baladi and Barki*) and one Syrian (*Damascus*) goat breeds were characterized using biochemical (SDS-PAGE and Native-PAGE) and molecular genetic (RAPD-PCR and SSR-PCR) techniques. The Syrian breed was previously classified into prolific and non-prolific groups according to litter size trait.

SDS-protein and RAPD analysis showed a high homogeneity value within each of the studied breeds, while native-protein analysis showed a lower homogeneity value within each one of the Damascus breed groups than Baladi and Barki breeds. Moreover, all used analyses showed some specific bands which differentiated among the studied breeds. In addition, Native-protein and RAPD analyses were more prominent than SDS-protein and SSR analyses in distinguishing among the four studied breeds. However, the dendrogram was constructed among the studied breeds based on the combined results analysis which showed that the two groups of Damascus breed were clustered together in one group, while Baladi breed was distantly related from this cluster.

Key words:

Genetic Characterization, Molecular Fingerprint, Biochemical Fingerprint, Genetic Markers, Similarity, Dendrogram, Polymorphism, Goat Breeds.

CONTENTS

LIST OF TABLES	IV
LIST OF FIGURES	VII
I. INTRODUCTION	1
II.REVIEW OF LITERATURE	3
1. Biochemical genetic fingerprinting	3
2. Molecular genetic fingerprinting	11
III.MAREIALS AND METHODS	18
1. Materials	18
1.1. Animals management	18
1.2. Blood samples collection	19
2. Methods	20
2.1. Biochemical genetic study	20
2.1.1. SDS-PAGE electrophoresis	20
2.1.1.1. Stock solutions	20
2.1.1.1. Gel buffers	20
2.1.1.1.1. resolving gel (4x Tris-HCl/SDS, pH 8.8)	20
2.1.1.1.2. Stacking gel buffer (4xTris-HCl/SDS, pH 6.8)	20
2.1.1.1.2. Acrylamide stock solution (30 %)	20
2.1.1.1.3. Ammonium persulfate stock solution (APS10%W/V)	21
2.1.1.1.4. SDS electrophoresis buffer	21
2.1.1.1.5. Staining solution	21
2.1.1.1.6. Destaining solution	21
2.1.1.2. Gel preparation	21
2.1.1.3. Preparing and loading samples	22
2.1.1.3.1. SDS sample buffer (2X Tris, PH 8.8)	22
2.1.1.3.2. Sample loading dye (5 X)	22
2.1.1.4. Electrophoretic conditions	23
2.1.1.5. Gel staining and destaining	23
2.1.2. Native-PAGE electrophoresis	23

2.1.2.1. Preparing and loading samples	24
2.1.2.2. Gel running	24
2.2. Molecular genetics study	24
2.2.1. DNA extraction from frozen blood	24
2.2.2. Stock solutions	26
2.2.2.1. Cell lysis buffer, PH 8.0	26
2.2.2.2. Ammonium acetate solution (7.5 M)	26
2.2.2.3. Agarose gel buffer (5X Tris-borate (TBE)), pH 8.0	27
2.2.2.4. DNA running (electrode buffer 1x TBE), pH 8.0	27
2.2.2.5. Ethidium bromide dye solution	27
2.2.3. Agarose gel preparation	27
2.2.4. Randomly amplified polymorphic DNA (RAPD)	28
Analysis	
2.2.4.1. Polymerase chain reaction (PCR) conditions	28
2.2.4.1.1. Primers	28
2.2.4.1.2. PCR conditions	29
2.2.4.1.3. DNA amplification cycles	30
2.2.5. Simple sequence repeats (SSR) analysis	30
2.2.5.1. PCR mixture for SSR analysis	30
2.2.5.2. SSR-PCR conditions	31
2.3. Gel and densitometric analysis	31
2.4. Dendrogram construction	33
IV. RESULTS AND DISCUSSION	34
1. Protein polymorphisms	34
1.1. Genetic polymorphism of the tested goat breeds as	34
detect by SDS-protein	
1.1.1. Within each studied breed	34
1.1.1.1 Baladi breed	34
1.1.1.2. Barki breed	34
1.1.1.3. Damascus breed	37

1.1.2. SDS-protein among the studied breeds	39
1.1.3. SDS-protein-specific markers for the tested breeds	42
1.2. Genetic polymorphism of the studied goat breeds used	42
native-protein	42
1.2.1. Within the studied breeds	43
1.2.1.1. Baladi breed	43
1.2.1.2. Barki breed	43
1.2.1.3. Damascus breed	45
1.2.2. Among the studied breeds	48
1.2.3. Native-protein-marker for the tested breeds	50
2. Molecular genetics fingerprinting	53
2.1. Randomly amplified polymorphic DNA (RAPD)	53
2.1.11. Genetic variation within-breeds	67
2.1.11. Genetic variation among-breeds	68
2.1.13. RAPD- specific markers for the studied breeds	68
2.2. Simple Sequence Repeats (SSR)	73
3. Combined results from SDS-protein, Native-protein, RAPD,	77
and SSR analyses	
V. SUMMARY	79
VI. REFERENCES	83
ARABIC SUMMARY	

LIST OF TABLES

1.	Composition of the resolving gel (15%) and the staking	22
	gel (3.9%).	
2.	Resolving acrylamide gels for native protein	24
	electrophoresis	
3.	Codes, sequences, and GC per cent contents of primers	29
	used	
4.	Name, sequences and annealing temperature degrees of	32
	each SSR primer.	
5.	Score of SDS-protein banding pattern of Baladi breed	35
	individuals.	
6.	Score of SDS-protein banding pattern of Barki breed	36
	individuals.	
7.	Score of SDS-protein banding pattern of prolific	38
	Damascus breed group.	
8.	Score of SDS-protein banding pattern of non- prolific	39
	Damascus breed group.	
9.	Score of SDS-protein banding pattern of the studied	41
	breeds [Baladi, Barki and Damascus (prolific and non-	
	prolific groups)].	
10.	Similarity matrices among the tested goat breeds based on	41
	SDS –protein banding pattern.	
11.	Score of native-protein banding pattern of Baladi breed	44
	individuals	
12.	Score of native-protein banding pattern of Barki breed	45
	individuals.	
13.	Score of native-protein banding pattern of prolific	46
	Damascus breed group individuals.	
14.	Score of native-protein banding pattern of non-prolific	48
	Damascus breed group individuals.	

- 15. Homogeneity percentages within the studied goat breeds based on the native-protein banding patterns.
- 16. Score of native-protein banding patterns of bulked 49 samples for the studied breeds.
- 17. Similarity matrices of the studied goat breeds based on 50 native –protein profiles.
- 18. Number of detected bands (N.D.B), number of 55 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer A7.
- 19. Number of detected bands (N.D.B), number of 56 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C2.
- 20. Number of detected bands (N.D.B), number of 57 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C5.
- 21. Number of detected bands (N.D.B), number of 58 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C8.
- 22. Number of detected bands (N.D.B), number of 60 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C16.
- 23. Number of detected bands (N.D.B), number of 61 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C19.

- 24. Number of detected bands (N.D.B), number of 62 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer C20.
- 25. Number of detected bands (N.D.B), number of 64 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer UBC24.
- 26. Number of detected bands (N.D.B), number of 65 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with primer UBC.
- 27. Number of detected bands (N.D.B), number of 66 polymorphic bands (N.P.B), Polymorphism% and molecular size range (bp) for RAPD fragments resulted with UBC primer.
- 28. Average of similarity values within each of Baladi, Barki, 67 Prolific Damascus and non-prolific Damascus breeds of each used primer.
- 29. Score of RAPD-PCR polymorphic bands produced using 70 ten bulked samples for Baladi, Barki and Damascus (prolific and non-prolific) breeds against the ten tested primers.
- 30. Similarity matrices among the studied breeds based on 71 RAPD-PCR analysis.
- 31. Score of SSR-PCR produced fragments using ten bulked 75 samples for each Baladi, Barki and Damascus (prolific and non-prolific) breeds against the ten tested primers.
- 32. Similarity matrices among the studied breeds based on 75 SSR analysis.
- 33. Similarity matrices among the studied breeds based on combined data analyses.

LIST OF FIGURES

1.	Side view of morphological features for Baladi (A),	19
	Barki (B) and Damascus (C) breed females.	
2.	SDS-protein banding pattern of prolific Baladi breed	35
	individuals.	
3.	SDS-protein banding pattern of non-prolific Barki breed	36
	individuals.	
4.	SDS-protein banding pattern of prolific Damascus breed	37
	group.	
5.	SDS-protein banding pattern of non-prolific Damascus	38
	breed group.	
6.	SDS-protein banding pattern of the studied goat breeds	40
	[Baladi, Barki and Damascus (prolific and non-prolific	
	groups)].	
7.	Dendrogram tree for the genetic distance among the	42
	studied goat breeds based on SDS -protein banding	
	pattern.	
8.	Native-protein banding pattern of Baladi breed	43
	individuals.	
9.	Native-protein banding pattern of Barki breed	44
	individuals.	
10.	Native-protein banding pattern of prolific Damascus	46
	breed group individuals.	
11.	Native-protein banding pattern of non-prolific Damascus	47
	breed group individuals.	4/
12.	Native-protein banding patterns of Bulked samples for	49
	the studied breeds.	
13.	Dendrogram of the genetic distances for the studied goat	50
	breeds based on native-protein profiles.	
14.	RAPD fragments of ten individual samples for Baladi	54
	(a), Barki (b), prolific Damascus (c) and non-prolific	

	Damascus (d) breeds against primer A7.	
15.	RAPD fragments of ten individual samples for Baladi	55
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C2.	
16.	RAPD fragments of ten individual samples for Baladi	57
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C5.	
17.	RAPD fragments of ten individual samples for Baladi	58
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C8.	
18.	RAPD fragments of ten individual samples for Baladi	59
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C16.	
19.	RAPD fragments of ten individual samples for Baladi	61
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C19.	
20.	RAPD fragments of ten individual samples for Baladi	62
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer C20.	
21.	RAPD fragments of ten individual samples for Baladi	63
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer UBC24.	
22.	RAPD fragments of ten individual samples for Baladi	65
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer UBC92.	
23.	RAPD fragments of ten individual samples for Baladi	66
	(a), Barki (b), prolific Damascus (c) and non-prolific	
	Damascus (d) breeds against primer UBC93.	
24.	RAPD-PCR fragments produced using ten bulked	69
	samples for Baladi, Barki and Damascus (prolific and	
	non-prolific) breeds against the ten tested primers.	

25.	Dendrogram for the genetic distances among the studied	72
	breeds based on RAPD-PCR analysis.	
26.	SSR-PCR fragments produced using ten bulked samples	74
	for Baladi, Barki and Damascus (prolific and non-	
	prolific) breeds against the ten tested primers.	
27.	Dendrogram for the genetic distances among the studied	76
	breeds based on SSR-PCR analysis.	
28.	Dendrogram for the genetic distances among the studied	78
	breeds based on combined data analyses.	

I. INTRODUCTION

Goat are widely distributed all over the world. They thrive in a wide variety of environmental conditions. They also consider as one of the most important economic sources of meat and milk in developing countries.

Improving the reproductive efficiency of goat flocks, especially in the developing countries, can increase the efficiency of kid production and consequently goat meat. On the other hand, the need to intensify goat production to conform today's systems of concentrated farming and to make goat raising more economically rewarding necessitated the use of prolific goats to increase returns per unit of production.

In Egypt, there are three major native goat breeds namely; Baladi, Barki (reared for meat production) and Zaraibi (reared for milk production).

Recently, many breeds were imported for crossing with the native breeds to improve their meat and milk production (such as Shami or Damascus goat). As a case, the Ministry of Agriculture in Egypt imported some bucks and does of the Damascus goat for crossing with the Barki goat to improve its meat production and recently the crossing between Damascus and Baladi goat was started for the same reason.

Analysis of genetic diversity as well as relationships between or within genera, species, or even individuals is essential to improve goat production. During the last three decades, classical strategies for evaluating genetic variability such as comparative anatomy, morphology, and embryology, have been increased. Nowadays, biochemical genetic fingerprint as well as molecular genetic fingerprint are quiet useful tools for genetic relationships studies among different resources (White and Coocke, 1992; Radovic and Vapa, 1996). Modern DNA manipulation provides unlimited potentialities for establishing accurate fingerprints at the molecular level.