Biological Basis and management of Dyslexia

Author: Ahmed Samara Mohammed Ali Takesham (M.B.B.ch.)

Dyslexia is a specific learning disability that is neurobiological in origin. It

is characterized by difficulties with accurate and/or fluent word recognition

and by poor spelling and decoding abilities. These difficulties typically result

from a deficit in the phonological component of language that is often

unexpected in relation to other cognitive abilities and the provision of effective

classroom instruction

Studies of structural differences in the brains of people of all ages show

differences between people with and without reading disabilities.people with

dyslexia have less gray matter in the left parietotemporal area

nondyslexic individuals. Having less gray matter in this region of the brain

could lead to problems processing the sound structure of language

(phonological awareness). Many people with dyslexia also have less white

matter in this same area than average readers, which is important because

more white matter is correlated with increased reading skill. Having less white

matter could lessen the ability or efficiency of the regions of the brain to

communicate with one another.

Several studies using functional imaging techniques that compared the

brain activation patterns of readers with and without dyslexia show potentially

important patterns of differences. We might expect that readers with RD

would show under activation in areas where they are weaker and over

activation in other areas in order to compensate, and that is exactly what many researchers have found.

Recent researches proposed that dyslexia actually has a biological origin ,but regarding the nature of the disease, its only discoverable after the child is at the age of school , and start to suffer the consequences of this disability, researches emphasized that early intervention gives much better results especially before school age ,this in turn raised the question of the possibility of screening these children at very early age .

Also there is effective psycho educational training programs that helps these children overcome their disability ,psychiatric intervention exceed this role to also help children who developed co morbid psychiatric disorders as well.

Although treatment studies have shown that the majority of children respond to evidence-based treatment interventions, there are still a significant number of children who are resistant to treatment. They are the challenges for future research and the children who require more comprehensive evaluation and individualized interventions.

BIOLOGICAL BASIS AND MANAGEMENT OF DYSLEXIA

Essay submitted for partial fulfillment of the master degree of Neuropsychiatry

Ahmed Samara Mohammed Ali Takesham

M.B.B.ch.

Under supervision of

Professor Doctor

• Amany Haroun El-Rasheed

Professor of psychiatry

Ain Shams University

Doctor

Heba Hamid El Shahawi

Assistant Professor of psychiatry

Ain Shams University

Doctor

Marwa Abdel Rahman Sultan

Lecturer of psychiatry

Ain Shams University

Ain Shams University

Faculty of Medicine

2009

CONTENTS

list of figures	5
List of tables	6
List of abbreviations	7
Introduction	10
Definitions	11
Prevalence	12
Dyslexia among different languages	13
Sex Differences in Dyslexia	14
Developmental Course	16
Etio-pathogenesis of dyslexia	18
The evolutionary hypothesis	18
The phonological hypothesis	18
The rapid auditory processing theory	20
The visual theory	21
The cerebellar theory	22
The magnocellular theory	24
Perceptual visual-noise exclusion hypothesis	28
Genetic Basis of dyslexia	30
LINKAGE FINDINGS IN DYSLEXIA	31

Additional linkage regions in dyslexia	38
Neurobiological evidences of dyslexia	41
Neurobiology of normal reading	42
Neurobiology of reading disability	44
Neurological evidence on the efficacy of inter-	
Diagnosis of dyslexia	59
Early screening of dyslexia	61
Risk factors	62
Tools of screening	64
RTI (RESPONSE to intervention)	68
Comorbidity with dyslexia	71
Dyslexia and autoimmune diseases	73
Dyslexia and affective disorders	74
Dyslexia and other Learning disorders	76
Dyslexia and Meares-Irlene syndrome	77
Dyslexia and poor coordination (Dyspraxia)	78
Dyslexia and Speech sound disorder (SSD) .	79
Dustavia AND DEVELORMENTAL coordination	
Dyslexia AND DEVELOPMENTAL coordination	on disorder80
Dyslexia and ADHD	

Dyslexia and other psychological problems	86
Atypical Brain development, The unified common pathway?	88
MANAGEMENT OF DYSLEXIA	91
General guidelines	93
Utilizing professional teachers or psychologists	93
Computerized remediation of dyslexia	94
Efficacy of Early versus late interverntion	96
General lines of treatment modalities and REMEDIATION	:99
Treatments targeting auditory processing	99
Treatments targeting the visual system	103
Treatments targeting the cerebellar or motor system (neurodevelopmental delay therapy)	106
Multi sensory modalities	109
Pharmaceutical Medication:	116
Role of nutrition:	120
Discussion	124
Summary	138
Recommendations	144
References	146

LIST OF FIGURES Prevalence of reading disability in research P.15 Figure 1 identified (RI) and school-identified (SI) boys and girls Trajectory of reading skills over time in p.17 Figure 2 nonimpaired and dyslexic readers The major routes of visual input into the dorsal p.25 Figure 3 and ventral streams Left hemisphere neural systems involved in p.43 Figure 4 reading Brain areas activated during reading in normal p.50 Figure 5 and dyslexic individuals A molecular layer ectopia in a dyslexic subject Figure 6 p.53 Brain regions showing anatomical differences in p.55 Figure 7 dyslexic subjects fluency gains obtained with the sublexical and p.96 Figure 8 Bakker treatment in the two age groups accuracy gains obtained with the sublexical and p.96 Figure 9 Bakker treatment in the two age groups the effect of monocular occlusion on reading age p.103 Figure 10 at 3, 6, 9 months Figure Schematic representation of possible pathways p.131 11 which lead to dyslexia

LIST OF TABLES

Table 1	Linkage analysis studies in families with dyslexia that showed the nine chromosome regions	P.32
Table 2	DSM-IV-TR and ICD-10 Diagnostic Criteria for Reading Disorder	P.60
Table 3	Tests for Evaluating Children with Reading Difficulties	P.66

		LIST OF ABBREVIATIONS
AA		Arachidonic acid
АВ	D	Atypical Brain Development
AD	HD	Attention Deficit Hyperactivity Disorder
AR	Т	Auditory Repetition Task
CD	Т	cerebellar deficit theory
DC	D	Developmental Coordination Disorder
DC	DC2	Doublecortin Domain Containing 2 Gene
DD	AT	Dyslexia Dyspraxia Attention Treatment
DG	iLA	Dihomo-gamma-linolenic acid
DH	IA	Docosahexaenoic acid
DIE	BELS	Dynamic Indicators Of Basic Early Literacy Skills
DR	D4	Dopamine D4 Receptor Gene
DSI	M IV	Diagnostic And Statistical Manual Of Mental Disorders. 4th Ed. Text Rev.
DT	I	Diffusion Tensor Imaging
DY	X(1-9)	Dyslexia Susceptibility Gene (1-9)
DY	X1C1	Dyslexia Susceptibility 1 Candidate 1 Gene
EEG	G	Electro encephalogram
EF.	Δ	essential fatty acids
EP/	Α	eicosapentaenoic acid
ERI	P	Event Related Potential
FM	IRI	Functional Magnetic Resonance Imaging

	HUFA	Highly unsaturated fatty acid
	HUGO	Human Genome Organisation
	ICD 10	International Classification Of Diseases
	IDEA	Individuals With Disabilities Education Act
	INPP	Institute For Neuro-Physiological Psychology
	IQ	Intelligence Quotient
	ISI	Inter-Stimulus Interval
9	KIAA031	Part Of Dyslexia Susceptibility Gene 2
	LALOT	Left Anterior And Lateral Occipito-Temporal Region
(GENE	LD TICS)	Linkage Disequilibrium
	LGN	Lateral Geniculate Nucleus
	LIPS	Linda mood Phoneme Sequencing Program
	LPMOT	Left Posterior And Medial Occipito-Temporal Region
	MBD	Minimal Brain Dysfunction
	MDT	magnocellular deficit theory
	MEG	Magnetoencephalography
	MEG	Magnetoencephalography
	MGN	Medial Geniculate Nucleus
	MRI	Magnetic Resonance Imaging
	MT	Middle Temporal
	PDT	phonological deficit theory

Parents' Evaluation Of Developmental Status
Positron Emission Tomography
phospholipase A2
Reading Achievement Score For Children
Random Dot Kinematograms
Roundabout, Axon Guidance Receptor, Homolog 1 Gene
Response To Intervention
Reverse Transcription Polymerase Chain Reaction
Stanford -Binet Test — Fourth Edition
Superior Colliculus
Specific Language impairment
Specific Learning Disability
Speech Sound Disorder
Test Of Auditory Analysis Skills
Test Of Awareness Of Language Segments
transient cognitive impairment
Test Of Dyslexia
Wechsler Individual Achievement Test Revised
Woodcock-Johnson Tests Of Cognitive Abilities And Tests Of Achievement Third Edition
Wide Range Achievement Test
Woodcock Reading Mastery Test

INTRODUCTION

For good readers, gaining meaning from print quickly and effortlessly, like breathing and speaking is a natural part of life. For these men and women, it is almost unimaginable how something that seems to come so naturally could be difficult for others. Without doubt, since ancient times when man learned to use printed symbols to convey words and ideas, there have been those who struggled to decipher the code. Just how many are affected, the basis of the difficulty, and most importantly, the most effective, evidence-based approaches to educating dyslexic children and young adults were questions that had to wait until quite recently for resolution. (Shaywitz, 2008)

Dyslexia was first described as "word blindness" in 1877, when Kussmaul reported a man who despite normal intelligence was unable to learn to read even though he received an adequate education. In the end of the 19th century, Hinshelwood and Morgan both described word blindness as a congenital defect, occurring in children with otherwise normal brains. These reports were based on studies of acquired dyslexia, or alexia, where neurological damage to certain brain areas result in loss of reading ability. In 1925, Orton described the first theory of specific learning difficulty. He hypothesized that the children's reading problems stemmed from a failure of the left hemisphere to become dominant over the right, and that a deficit in visual processing

was the cause for the reading difficulties. He termed the disorder "strephosymbolia", i.e., "twisted symbols" from the Greek words [strepho] =twist, and [symbolon] =symbol. The disorder was later more appropriately called dyslexia, "difficulty with words" (from Greek [dys] =difficult, [lexis] =words), as it was recognized that the condition is language-related, rather than a visual problem. In 1968 The Research Group on Developmental Dyslexia from The World Federation of Neurology recommended the earliest definitions of dyslexia used today, although they have since then been somewhat subjected to revisions and changes. (Richardson 1992)

DEFINITIONS

The current definition from the International Dyslexia Association states:

Dyslexia is a specific learning disability that is neurological in origin. It is characterized by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities. These difficulties typically result from a deficit in the phonological component of language that is often unexpected in relation to other cognitive abilities and the provision of effective classroom instruction. Secondary consequences may include problems in reading comprehension and reduced reading experience that can impede growth of vocabulary and background knowledge

(Adopted by the International Dyslexia Association Board of Directors, , 2002).

Definition of the British Dyslexia Association

"Dyslexia is a specific learning difficulty which mainly affects the development of literacy and language related skills. It is likely to be present at birth and to be lifelong in its effects. It is characterised by difficulties with phonological processing, rapid naming, working memory, processing speed, and the automatic development of skills that may not match up to an individual's other cognitive abilities."

PREVALENCE

Reading difficulties are thought to be highly prevalent; the specific prevalence rate will reflect the particular definition and cut points established as criteria for identification. For example, results of the 2005 National Assessment of Educational Progress indicate 27% of high school seniors are reading below the most basic levels (minimum level at which a student can demonstrate an understanding of what she or he has read) (Grigg et al. 2007).

Even more primary grade students—36% of fourth grade children—are reading below basic levels (Perie et al. 2005).

However, Difficulties arise in determining the prevalence of dyslexia in this sense for the following reasons:

(i) The condition may show itself differently in different languages;

- (ii) Full assessments on a scale necessary for arriving at a prevalence figure would place a heavy demand on resources;
- (iii) The situation is further complicated by the fact that there are dyslexia variants -- mild cases sometimes occurring among the relatives of those more severely affected. (Miles 2004)

It has been suggested that up to 10% of the population (or even more) show some signs of dyslexia, particularly when it is present in other members of the family. (Pennington .1991)

A survey study of dyslexia in Kuwait highlighted the prevalence rate of dyslexia at 6.3% of the number of students attending primary schools. (Kuwait Dyslexia Association, 2002)

DYSLEXIA AMONG DIFFERENT LANGUAGES

A functional brain imaging study of adult dyslexics from different cultures (English, French and Italian) showed same abnormal patterns of brain activation during reading and phonological tasks across languages, i.e., reduced activity in the left hemisphere (Paulesu et al. 2001). The region showing most significant reduction in activation was the middle temporal gyrus, with marked decrease also in the inferior and superior temporal gyri and the middle occipital gyrus. Reduced activation in these regions has also been shown in MEG studies of Finnish dyslexics (Salmelin et al. 1996). These results suggest common neurological