Synthesis and Characterization Of Nanostructure Polymers by Gamma Irradiation and its Possible Applications

A Thesis
Submitted To
Chemistry Department
Faculty of Science
Ain Shams University

In partial fulfillment of the requirements of the Master Degree in Chemistry

(M.Sc)

By

Mohamed Salah Abd EL- Rasoul Soliman

B.Sc. Fac. of Science, Assuit University, 2005.

APPROVAL SHEET

Synthesis and Characterization Of Nanostructure Polymers by Gamma Irradiation and its Possible Application.

By

Mohamed Salah Abd EL-Rasoul Soliman

B.Sc. Fac. of Science, Assuit University, 2005.

This Thesis for Ph.D. Degree in Environmental Science has been approved by:

Name: Signature:

- (1) Prof. Dr. Hisham Foad Aly
 Prof. of Radiation Chemistry, National
 Center for Radiation Research and
 Technology
- (2) Prof. Dr. Mahmoud Ahmed Abed El-Ghaffar Prof of Polymer, National Center for Research
- (3) Prof. Dr. El-Sayed A. Hegazy
 Prof. of Radiation Chemistry, National
 Center for Radiation Research and
 Technology
- (4) Prof. Dr. El-Sayed Ahmed Soliman
 Prof of organic chemistry-Ain Shams
 University

Synthesis and Characterization of Nanostructure Polymers by Gamma Irradiation and its Possible Application.

By

Mohamed Salah Abd EL- Rasoul Soliman

B.Sc. Fac. of Science, Assuit University, 2005.

A Thesis Submitted for Master Degree in Chemistry Department of Chemistry Faculty of Science Ain Shams University

Under The Supervision of:
1-Prof. Dr. El-Sayed Ahmed Soliman Abd El-Aziz
Prof. of chemistry., Faculty of
Science, Ain Shams University

2- Prof. Dr.. El-Sayed A. Hegazy

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology

3- Prof. Dr.. Magda Borhan El-Din Fahmy El-Arnaouty Prof. of Radiation Chemistry, National Center for Radiation Research and Technology

تحضير و توصيف البوليمرات النانومترية باستخدام التشعيع الجامي و تطبيقاتها الممكنة

رسالة مقدمة الي كلية العلوم جامعة عين شمس

للحصول على درجة الماجستير في الكيمياء

مقدمة من محمد صلاح عبدالرسول سليمان بكالوريوس علوم- كيمياء و نبات - كلية العلوم- جامعة أسيوط 2005

2012م

صفحة الموافقة علي الرسالة المحضير و توصيف البوليمرات النانومترية باستخدام التشعيع الجامي و تطبيقاتها الممكنة!

رسالة مقدمة من الطالب محمد صلاح عبدالرسول سليمان بكالوريوس علوم- كيمياء و نبات - كلية العلوم- جامعة أسيوط 2005

للحصول على درجة الماجستير

في الكيمياء

وقد تمت مناقشة الرسالة والموافقة عليها اللجنة:

- (1) ا.د./ هشام فؤاد محمد علي استاذ الكيمياء الاشعاعية هيئة الطاقة الذرية
 - (2) ا.د./ محمود احمد عبد الغفار استاذ البوليمرات المركز القومي للبحوث
- (3) ا.د./ السيد احمد عبد العزيز حجازي استاذ الكيمياء الاشعاعية عيئة الطاقة الذرية
- (4) ا.د./ السيد احمد سليمان عبد العزيز استاذ الكيمياء العضوية كلية العلوم جامعة عين شمس

تحضير و توصيف البوليمرات النانومترية باستخدام التشعيع الجامي و تطبيقاتها الممكنة

رسالة مقدمة من الطالب محمد صلاح عبدالرسول سليمان بكالوريوس علوم كيمياء و نبات ـ كلية العلوم ـ جامعة أسيوط 2005

للحصول على درجة الماجستير

في الكيمياء

1- / السيد أحمد سليمان عبدالعزيز الكيمياء العضوية كلية جامعة عين شمس

2- . / السيد أحمد عبدالعزيز حجازي أستاذ الكيمياء الاشعاعية

ركز القومي لبحوث وتكنولوجيا الإشعاع

3- . / ماجدة برهان الدين فهمي الأرناؤوطي أستاذ كيمياء البوليمرات المركز القومي لبحوث وتكنولوجيا الإشعاع

:

أجيزت الرسالة بتاريخ / 2012/

الكلية

2012 /

2012 / /

Abstract

A series of (PVA/PVP) hydrogels were prepared by gamma radiation. The effect of preparation conditions such as copolymer composition ratio and irradiation dose on the gelation percent. The swelling property of the prepared hydrogels in bidistilled water was studied. Highly stable and uniformly distributed silver nanoparticles (PVA/PVP)-Ag have been obtained with hydrogel networks as nanoreactors. The morphology and structure of (PVA/PVP) hydrogel and dispersion of the silver nanoparticles in the polymeric matrix was examined by scanning electron microscopy (SEM) and Infrared spectroscopy (FT-IR). The formation of silver nanoparticles has been confirmed with ultraviolet (UV-vis) spectroscopy, Dynamic light scattering (DLS), Xray diffraction pattern (XRD) and Transmission electron microscope (TEM). The polymer -clay nanocomposite hydrogel wound dressing based on (PVA/PVP) and different contents of reinforcing agent, i.e. calcium bentonite, were prepared by gamma irradiation process. Their physical properties were investigated. The thermal stability studies confirmed that the introduction of clay leads to increase in the thermal stability. The TEM results showed that, the clay nanoparticles are interclated and exfoliated in the polymeric matrix. The improved properties and the antibacterial properties suggest that, (PVA/PVP)-Silver nanoparticles and (PVA/PVP/clay) nanocomposite can be a good candidate as wound dressing.

Keywords: (PVA/PVP)-Ag nanocomposite, (PVA/PVP)-clay nanocomposite, gamma radiation, XRD, UV-vis, DLS, TEM, wound dressing.

<u>Acknowledgement</u>

I would like to express my deepest and sincere gratitude to **PROF. DR. EL-SAYED AHMED SOLIMAN ABD EL-AZIZ,** Professor of organic chemistry, Faculty of science, Ain Shams University, for his sponsorship, constructive criticism and deep concern in this work.

HEGAZY, Prof. of Radiation Chemistry, former Chairman of the National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority of Egypt (AEAE), Member of Standing Advisory group of Nuclear Applications in International Atomic Energy Agency, for suggesting; planning the point of research, close supervision throughout this work, I will never forget his good attitudes with me.

Deepest thanks and sincere gratitude are due to PROF. DR. Magda Borhan El-Din Fahmy El-Arnaouty, Prof. of Radiation Chemistry, Department of polymer chemistry, National Center for Radiation Research and Technology (NCRRT), for valuable discussion, guidance and critical reading of this work.

Also many thanks to my Co-Supervisor ASSISTANT PROF. DR. Mona Eid Mohamed Mohamed, Assis. Prof. of Radiation Chemistry Department of polymer chemistry, National Center for Radiation Research and Technology (NCRRT), for valuable discussion, guidance and critical reading of this work.

Many thanks to all my colleagues in the Department and the Center (NCRRT) for facilities offered and continuous encouragement in various ways.

CONTENTS

CONTENTS	
	Page
AIM OF WORK	
CHAPTER I	
INTRODUCTION	1
1.Nanotechnology	1
2.Nanoparticles	2
2.1.Prepration of nanoparticles	4
3. Nanocomposite	5
4. Polymer- metal nanocomposite	5
4.1. Poly (vinyl alcohol)/Poly (vinyl pyrrolidone)-	
based hydrogel silver nanoparticles	7
4.2. Radiation synthesis of metal nanoparticales	9
5. Applications of prepared hydrogels	17
6. Polymer-clay hybrid nanocomposite	18
CHAPTER II	
LITERATURE REVIEW	
1. What are nanomaterials?	26
2.Preparation and characteristic properties of wound	
dressing polymer.	27
3. Hydrogel nanoparticles in drug delivery.	31
4.PVA/PVP hydrogel nanoparticles in drug delivery.	36
5.Antibacterial polymers/silver nanoparticles	43
6.Clay – based nanocomposite.	50
7.Surface modification of clay.	52
8.Polymer clay nanocomposite hydrogels for wound	57
dressing	
CHAPTER III	
MATERIALS&TECHNIQUES	

3.1. MATERIALS	
3.2. APPARATUS AND METHODS	
3.2.1. Gamma Radiation Source	65
3.2.2. Preparation of PVA/PVP hydrogels	66
3.2.3. Synthesis of hydrogel – Ag nanoparticles	66
3.2.4. Preparation of PVA/PVP/clay hydrogels	67
3.2.5. Gelation percent	67
3.2.6. Swelling studies	67
3.2.7- FT-IR spectroscopy	68
3.2.8. UV – Vis spectrophotometry	68
3.2.9. X- ray diffraction (XRD)	68
3.2.10.Thermal study	69
3.2.10.1.Thermogravimetric analysis	69
3.2.10.2 Differential scanning calorimetry	69
3.2.11. Scan Electron Microscope (SEM)	70
3.2.12. EDX measurement	70
3.2.13. Dynamic light scattering (DLS)	70
3.2.14. Transmission Electron Microscope (TEM)	70
CHAPTER IV	
RESULTS AND DISCUSSION	
4.I. Radiation synthesis and characterization of	
PVA/PVP based hydrogl containing silver	
nanoparticles.	
4.I.1. Gelation percent	73
4.I.2. Swelling studies	77
4.I.3. FT-IR spectroscopy	85
4.I.4. UV – Vis spectrophotometry	87
4.I.5. X- Ray diffraction	91
4.I.6. EDX measurements	95

4.I.7. SEM me	asurements	S			
4.I.8. Dynamic	light scatt	ering (DLS) m	neasuremen	nts	
4.I.8.a. Effect	of Ag nan	ocomposite po	owder weig	ght	
4.I.8.b. Effect	t of dilution	n			
4.I.9. Transmiss	ion Electro	on microscope	(TEM)		
4.II. Preparati				ly vinyl	
alcohol/poly	vinyl	pyrrolidor	_	based	
nanocomposite	by gamma	a irradiation			
4.II.1. Gelatio	n percent				
4.II.2. Swellin	g studies				
4.II.2.1. Effe	ect of irradi	iation dose on	swelling		
4.II.2.2. Effe	ct of clay c	content on the	swelling		
4.II.3. Form	nation n	nechanism	of polyi	mer/clay	
nanocomposite.					
4.II.4. Therma	al analysis				
4.II.4.1. The	rmogravin	netric analysis			
4.II.4.2. Dif	ferential sc	anning calorin	netry		
4.II.5. X-ray di	iffraction a	nalysis	•		
4.II.6. Scannin		· ·			
4.II.7. Transmi	_		pe (TEM)		
			. ,		
SUMMARY					
REFFRENCES	3				
الملخص العرب					

LIST OF FIGURES

Figure number	Figure caption	Page number
1	Relationship between the gelation (%) of (PVA/PVP) at different compositions and irradiation dose (20kGy).	74
2	Effect of irradiation dose on the gelation (%) of PVA/PVP (60:40)hydrogel.	75
3	Relationship between Swelling (%) and immersion time (h) for different compositions of hydrogel at 20 kGy.	78
4	Relationship between swelling (%) and immersion time (h) for PVA/PVP (60:40) at different irradiation dose.	80
5	Swelling percent of PVA/PVP (60:40) hydrogel, silver ion-loaded hydrogel and hydrogel silver nanoparticles.	82
6	FTIR spectra of PVA/PVP (60:40) hydrogel and PVA/PVP loaded silver nanoparticles.	86
7	UV–Vis spectra of different composition of PVA/PVP (60:40) hydrogel loaded silver nanocomposites at irradiation dose 30 kGy.	89
8	UV-Vis spectra of PVA/PVP (60:40) hydrogel loaded silver nanocomposites at different irradiation doses.	90
9	X-ray diffraction of PVA/PVP (60:40) hydrogel at irradiation dose 30 kGy.	93

10	X-ray diffraction of PVA/PVP-silver loaded hydrogel at irradiation dose 30 kGy and AgNO ₃ concentration 16 m mol.	94
11	EDX measurement for PVA/PVP (60:40) loaded silver nanoparticle (16m mol).	95
12	SEM images of representative of PVA/PVP (60:40) hydrogel at irradiation dose 30KGy.	96
13	SEM images of representative PVA/PVP (60:40) hydrogel loaded with silver nitrate at irradiation dose 30KGy.	97
14	SEM images of representative PVA/PVP (60:40) hydrogel–silver nanocomposite at 30KGy.	97
15	DLS measurement of the silver nanoparticles in (PVA/PVP) (60:40) hydrogel, AgNO ₃ concentration 16 mmol, 0.01g hydrogel in (9.5ml $H_2O + 0.5$ ml HNO_3).	99
16	DLS measurement of the silver nanoparticles in (PVA/PVP) (60:40) hydrogel, AgNO ₃ concentration 16 mmol, 0.3 g hydrogel in (9.5ml $H_2O + 0.5$ ml HNO_3).	101
17	DLS measurement of the silver nanoparticles in (PVA/PVP) (60:40) hydrogel, AgNO ₃ concentration 16 mmol, 0.3 g hydrogel in (9.5ml $H_2O + 0.5$ ml HNO_3) diluted twice.	102
18	DLS measurement of the silver nanoparticles in (PVA/PVP) (60:40) hydrogel, AgNO ₃ concentration 12 mmol,, 0.01 g hydrogel in 20 ml H ₂ O.	103

19	Typical TEM micrograph of PVA/PVP (60:40) loaded silver nanoparticles.	105
20	The corresponding size distribution histogram of Ag nanoparticles inside the PVA/PVP (60:40) hydrogel.	106
21	The effect of irradiation dose on the gelation (%) of PVA/PVP/clay nanocomposites at PVA/PVP (60:40) and 1.5% clay.	110
22	Relationship between swelling (%) and immersion time (h) for PVA/PVP/clay hydrogels at different irradiation dose and 1.5 % clay.	112
23	Effect of clay content (%) on the Swelling (%) of PVA /PVP /clay hydrogels at 25 kGy.	114
24	FTIR of different clay contents of PVA /PVP /clay hydrogels at clay contents (a) 0.3, (b) 1%, (c) 3% and (d) 5% at irradiation dose of 25 kGy.	117
25	The TGA curve of PVA/PVP (60:40) at irradiation dose of 25 kGy.	119
26	The TGA curve of (PVA/PVP)-clay with clay content of 1% at irradiation dose 25 kGy.	120
27	The TGA curve of (PVA/PVP)-clay with clay content 3% at irradiation dose of 25 kGy.	121
28	The TGA curve of (PVA/PVP)-clay with clay content 5% at irradiation dose 25 kGy.	122
29	The DSC curve of (PVA/PVP)-clay composite with different clay contents of a (1 %), b (1.5 %)	127