PRODUCTION OF MICROBIAL GELLAN USING DIFFERENT FERMENTATION METHODS

SHIMAA KAMEL ALI MOHAMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUCTION OF MICROBIAL GELLAN USING DEFFERNT FERMENTATION METHODS

By SHIMAA KAMEL ALI MOHAMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Farouk Shehata Abu - El - Ela	•••••
Prof. of Agricultural Microbiology, Faculty of A University	
Prof. Dr. Abdel -Wahab Abdel -Hafez	•••••
Prof. Emeritus of Agricultural Microbiology, Ain Shams University	Faculty of Agriculture,
Prof. Dr. Hemmat Mohamed Abdel -Hady	•••••
Prof. of Agricultural Microbiology, Faculty	of Agriculture, Ain
Shams University	
Prof. Dr. Rawia Fatthy Gamal	••••••
Prof. Emeritus of Agricultural Microbiology, Fa	aculty of Agriculture,
Ain Shams University	

Date of Examination: 14 /11 /2009

PRODUCTION OF MICROBIAL GELLAN USING DIFFERENT FERMENTATION METHODS

BY SHIMAA KAMEL ALI MOHAMED

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

Under the supervision of:

Prof. Dr. Rawia F. Gamal

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Hemmat M. Abdel -Hady

Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Taha A. Khodair

Associate Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

إنتاج الجيلان الميكروبي باستخدام طرق تخميرية مختلفة

رسالة مقدمة من شيماء كامل علي محمد

بكالوريوس علوم زراعية (ميكروبيولوجيا زراعية) ، جامعة عين شمس ، 2003

للحصول على

درجة الماجستير في العلوم الزراعية (ميكروبيولوجيا زراعية)

قسم الميكروبيولوجيا الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة إنتاج الجيلان الميكروبي باستخدام طرق تخميريه مختلفة

رسالة مقدمة من

شیماء کامل علی محمد

بكالوريوس علوم زراعية (ميكروبيولوجيا زراعية) ، جامعة عين شمس ، 2003

للحصول علي درجة الماجستير في العلوم الزراعية (ميكروبيولوجيا زراعية)

	اللجنة:
•••••	أ.د. فاروق شحاته أبو العلا
	أستاذ الميكروبيولوجيا الزراعية ،كلية الزراعة ، جامعة المنيا
أستاذ	أ.د. عبد الوهاب عبد الحافظ
<u></u>	الميكروبيولوجيا الزراعية المتفرغ ، كلية الزراعة ، جامعة عين شم
•••••	أ.د. همت محمد عبد الهادي
	أستاذ الميكروبيولوجيا الزراعية ، كلية الزراعة ، جامعة عين شمس
•••••	أ.د. راويه فتحي جمال
شمس	أستاذ الميكروبيولوجيا الزراعية المتفرغ ، كلية الزراعة ، جامعة عين

وقد تمت مناقشة الرسالة والموافقة عليها

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالبة : شيماء كامل على محمد

عنوان الرسالة : إنتاج الجيلان الميكروبي باستخدام طرق تخميرية

مختلفة

اسم الدرجة : ماجستير في العلوم الزراعية (ميكروبيولوجيا زراعية)

لجنة الإشراف:

أ. د. راوبه فتحى جمال

أستاذ الميكروبيولوجيا الزراعية المتفرغ ، قسم الميكروبيولوجيا الزراعية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

أ.د. همت محمد عبد الهادي

أستاذ الميكروبيولوجيا الزراعية ، قسم الميكروبيولوجيا الزراعية ، كلية الزراعة ، جامعة عين شمس

د. طه عبد الفتاح خضير

أستاذ الميكروبيولوجيا الزراعية المساعد ، قسم الميكروبيولوجيا الزراعية ، كلية الزراعة ، جامعة عين شمس

تاريخ البحث: 14 / 2 /2005

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 2009 / 11 / 14 موافقة مجلس الكلية موافقة مجلس الجامعة 2009 / /

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

There are few opportunities in the most people's lives to demonstrate formally one's gratitude to people who have been mentors and supporters at different steps of our lives. Even thought, we do not forget to stamp those feeling on paper.

I would like to express my sincere thanks, and deep appreciation to **Dr. Rawia Fatthy Gamal** Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for suggesting the problem, guideness, support, valuable help and fruitful supervision throughout the present study.

Also, deep thanks to **Dr. Hammat Mohamed Adlhandy** Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for her kindness support, guideness and advising me throughout this study.

Deep Thanks and gratitude are extended to **Dr. Taha Adelfatah Kodair** Associate Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for his sincere help, precious advice and support not only at the scientific level.

Thanks also are extended to all staff member of Agric Microbiology Dept., Faculty of Agric., Ain Shams University.

ABSTRACT

Shimaa Kamel Ali Mohamed: Production of Microbial Gellan Using Different Fermentation Methods. Unpublished M.Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2009.

Gellan gum is a microbial polysaccharide commercially produced by fermentation with *Sphingomonas paucimobilis*. Due to its good rheological characteristics, gellan gum has wide application in food, pharmaceutical, industrial and bioremediation of contaminated soils and aquifers.

In the present study, a number of 80 yellow pigmented gram negative short rod isolates were collected and tested for gellan production. Only five isolates were selected as high efficient gellan producing bacteria and identified as *Sphingomonas paucimobilis*. In a series of experiments on gellan production, sucrose- nitrate medium (**Ashtaputer and Avinash**, **1995**) was modified by replacing potassium nitrate with sodium nitrate as sole nitrogen source for highest gellan production after 3 days fermentation period at 28°C using shake flasks as a batch culture.

Different treatments of cane molasses and corn steep liquor gave lower viscosity than modified med.3, whereas the highest gellan yield and productivity being 12.66 % and 0.032g1⁻¹h⁻¹ were obtained by *S.paucimobilis* RNS4 by decreasing the crude sweet whey concentration from 87 % to 40 % as whole productive medium.

Biological activity of *S.paucimobilis* RNS4 was studied in bioreactor as a batch, fed batch and continuous culture. In batch culture, 40 % sweet whey were saturated with 60 % air and agitated at 750 rpm resulted to increase the gellan yield and productivity by *S.paucimobilis* RNS4 to 3.19 fold, respectively as compared with that obtained in shake

flasks technique. Using the continuous feeding of sugar sweet whey at 1.53gh⁻¹ was favorable than pulsed feeding for gellan production in fed batch culture. In continuous culture, at 0.055 h⁻¹ dilution rate, the values of gellan parameters recorded by *S. paucimobilis* RNS4 on 40 % crude sweet whey were 24.34 %, 26.54 % & 0.337 gl⁻¹h⁻¹ for gellan yield , conversion coefficient and gellan productivity. This technique increased the produced gellan by 3.3 & 1.5 fold as compared to that produced by batch and fed batch culture techniques.

Key Words: Gellan gum, *Sphingomoas paucimobilis*, shake

flasks, bioreactor, batch culture, fed batch culture, continuous culture, viscosity and

medium composition

CONTENT

Page
LIST OF TABLEIV
LIST OF FIGURESIX
LIST OF PHOTOXII
1. INTRODUCTION
2. REVIW OF LITRATURE3
2.1. Chemical structure of gellan
2.2. Physiochemical properties of gellan
2.3. Biosynthesis and chemical structures of gellan gum5
2.3.1. The biosynthetic pathway up to the sugar procuress5
2.3.2. Assembly of gellan repeat unit6
2.3.3. Gellan polymerization and export
2.4. Isolation of gellan producing bacteria7
2.5. Gellan production by fermentation8
2.5.1. Factors affecting gellan production8
2.5.1.1. Nutritional factors8
2.5.1.1.1. Carbon source
2.5.1.1.2. Nitrogen sources
2.5.1.1.3. Growth medium composition
2.5.1.1.3.1. Whey
2.5.1.1.3.2. Molasses
2.5.1.1.3.3. Soybean, soytone and corn syrup
2.5.1.1.3.4. Minerals
2.5.1.2. Environmental factors
2.5.1.2.1. Temperature
2.5.1.2.2. pH
2.5.1.2.3. Age and volume of inoculum
2.5.1.2.4. Agitation and aeration
2.6. Fermentation processes
2.7. Recovery of gellan gum21
2.8.Gellan gum application

3. MATERIALS AND METHODS	26
3.1. Samples	26
3.2. Media used	27
3.3. Agroindustrial residues	31
3.4. Isolation of gellan producing bacteria	32
3.5. Maintenance of cultures	32
3.6. Standard inoculum	33
3.7. Identification of gellan producing bacteria	33
3.8. Shake flasks experiments	33
3.8.1. Selection of suitable medium for gellan production	
3.8.2. Effect of fermentation period	33
3.8.3. Effect of carbon sources	34
3.8.4. Effect of nitrogen sources	34
3.8.5. Agro – industrial residues uses for gellan gum production.	34
3.9. Bioreactor experiments	35
3.9.1. Bioreactor as a batch culture	
3.9.1.1. Biological activity of gellan producing bacteria	36
3.9.1.2. Effect of aeration on gellan production	36
3.9.1.3. Effect of agitation speed 6production	36
3.9.2. Bioreactor as Fed- batch culture	36
3.9.3. Bioreactor as continuous culture	37
3.10. Properties of gellan gum	37
3.10.1. Lipid Emulsifying Test	37
3.10.2. Flocculating Test.	38
3.10.3. Solubility	38
3.11. Chemical determinations	
3.11.1. Sugars	38
3.11.2. Total nitrogen.	
3.11.3. Gellan determination	
3.11.4. pH	39
3.12. Growth and gellan parameters	
3.12.1. The specific growth rate (μ) and doubling time (t_d)	39

3.12.2. Number of generations	9
3.12.3. Continuous culture kinetics	0
3.12.4.Biomass yield factor(Yx/s)	Ю
3.12.5. Gellan Yield(%)	0
3.12.6 Conversion coefficient (%)	0
3.12.7. Gellan yield coefficient relative to biomass(Y p/x)40	0
3.12.8. Gellan productivity (P)	1
3.12.9. Sugar utilization efficiency	1
3.13. Statistical analysis4	1
4. RESULTS AND DISCUSSION42	2
4.1. Isolation of gellan producing bacteria4	-2
4.2. Selection of gellan producing isolates and suitable medium42	2
4.3. Factors affecting the gellan production46	6
43.1. Effect of fermentation period	5
4.3.2. Effect of carbon sources	3
4.3.3. Nitrogen sources	8
4.3.4. Uses of some agroindustrial residues for gellan production72	2
4.3.4.1. Black strap cane molasses	2
4.3.4.2. High test molasses	3
4.3.4.3. Glucose syrup	7
4.3.4.4. Corn steep liquor	1
4.3.4.5. Sweet whey	l
4.3.4.6. Effect of different concentration of crude sweet89)
whey and glucose syrup on production of gellan gum by S .	
paucimobilis RNS4	
4.3.4.7. Effect of different concentration of glucose syrup9	2
on the production of gellan gum by S. paucimobilis RBV7	
4.3.5. Cultivation of <i>S.paucimobilis</i> RNS49	7
4.3.5.1. As a batch culture9	7
4.3.5.1.1. Biological activity of <i>S. paucimobilis</i> RNS49) 7
4.3.5.1.2. Effect of aeration	0
4.3.5.1.3. Effect of agitation speed	0

ARABIC SUMMARY	
6. REFRACES	145
5.SUMMARY	139
4.4.3. Solubility of gellan.	138
4.4.2. Flocculating effect of gellan	138
4.4.1. Emulsifying capacity of purified gellan	136
4.4. Some gellan gum properties	136
4.3.5.3. Continuous culture	127
4.3.5.2.2. Continuous sugar feeding	123
4.3.5.2.1. Pulsed sugar feeding.	119
4.3.5.2. Fed – batch culture	119

LIST OF TABLES

12. The growth densities of <i>S.paucimobilis</i> strains on69
clarified cane molasses (CCM) (4% sugar) treatments during
hours at 28°C using shake flasks at a batch culture.
13. The culture viscosity and its change (%) of <i>S. paucimobilis</i> 70
strains as affected by different treatments of clarified cane
molasses (CCM) medium during 72 hours at 28°C using shake
flasks as a batch culture.
14. The growth densities of <i>S. paucimobilis</i> strains74
on high test cane molasses (HTM) (4% sugar) treatments during
hours at 28°C using shake flasks as a batch culture.
15. The culture viscosity and its change (%) of <i>S. paucimobilis</i> 76
strains as affected by different treatments of high test cane
molasses (HTM) medium during 72 hours at 28°C using shake
flasks as a batch culture.
16. The growth densities of <i>S. paucimobilis</i> strains on glucose78
syrup (GS) (4%) treatments during 72 hours at 28°C using shake
flasks as a batch culture.
17. The culture viscosity and its change (%) of <i>S. paucimobilis</i> 79
strains as affected by different treatments of glucose (GS) medium
during 72 hours at 28°C using shake flasks as a batch culture.
18. The growth densities of <i>S.paucimobilis</i> strains on corn steep82
liquor (CSL) (0.1% nitrogen) treatments during 72 hours at 28°C
using shake flasks as a batch culture.
19. The culture viscosity and its change (%) of <i>S. paucimobilis</i> 83
strains as affected by different treatments of corn steep liquor
(CSL) during 72 hours at 28°C using shake flasks as a batch
culture.
20. The growth densities of <i>S.paucimobilis</i> REch7 &RNS486
strains on crude sweet whey (SW) (4% sugar) treatments during
72 hours at 28°C using shake flasks as a batch culture.
21. The culture viscosity and its change (%) of <i>S. paucimobilis</i> 87