

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

A PHARMACEUTICAL STUDY ON SOME BIOADHESIVE DRUG DELIVERY SYSTEMS

Presented by

Ragwa Mohamed Farid Mansour

M. Pharm. Sci., Alexandria University

For the Degree

Of

Doctor of Philosophy

In

Pharmaceutics

Examiners' Committee Approved
Prof. Dr.

	•	
·		

Advisors' Committee

Prof. Dr. Abd El-Azeem Ebian Libian

Professor of Pharmaceutics

Department of Pharmaceutics

Prof. Dr. Mohamed Ahmed Etman -----

Professor of Pharmaceutics

Department of Pharmaceutics

ACKNOWLEDGEMENT

First of all, thank you ALLAH for helping me through this work.

I would like to thank my supervisor *Professor Dr. Abd-El Azeem Ebian* Professor of Pharmaceutics, Faculty of Pharmacy, Alexandria University for his encouragement and guidance.

I am deeply indebted to my supervisor *Professor Dr. Mohamed Etman* Professor of Pharmaceutics, Faculty of Pharmacy, Alexandria University for his kind advice, wise guidance and valuable supervision and without his assistance this study would not have been successful.

Special thanks go to *Professor Dr. Viviane Fahim Naggar*, Professor of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, for her kind help and guidance have been of great value.

I wish to thank *Professor Dr. Ali Hazzah* Professor of Organic Chemistry, Faculty of Pharmacy, Alexandria University for his guidance in interpretation of IR spectra and *Professor Dr. Iman Fawazy* Professor of Physiology, Faculty of Medicine, Alexandria University for her essential assistance in the histological part in this study.

During this work I have collaborated with many colleagues for whom I have great regards especially Abir Kassem & Jihan Salah and I wish to extend my warmest thanks to all those who have helped me with my work in the Department of Pharmaceutics.

I would like also to thank the secretarial staff, technicians, and workers in the Department of Pharmaceutics for their great assistance.

Lastly, and most importantly, I wish to thank my family members to them I dedicate this thesis for their patience and continuous support.

Above all, I thank my husband, who stood beside me and encouraged me constantly. Without my husband's encouragement, I would not have finished the degree.

Thank you, Ragwa

TABLE OF CONTENTS

ACKNOWLEDGEMNT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiiii
GENERAL INTRODUCTION	1
- Mucosal Surface	1
 Mechanisms and Theories of Bioadhesion 	2
- Factors affecting Bioadhesion	3
A. Bioadhesive Polymer-related Factors	3
B. Environment – related Factors	4
C. Physiological Variables	5
- Bioadhesive (Mucoadhesive) Polymers	6
1. First-generation Bioadhesives	6
2. Second- generation Bioadhesives	6
3. Thiolated Polymers or Thiomers	7
4. Miscellaneous	7
- Test Methods Used to Study Bioadhesion	8
A. In-vitro / ex-vivo Methods	8
B. In-vivo Methods	10
- Applications of Bioadhesive Dosage Forms	10
- Nasal Drug Delivery	12
 Nasal Drug Delivery: Advantages, Limitations and Solutions 	12
- Function of the nose	15
 Anatomy and Physiology of the Nose 	16
I. Nasal cavity	16
II. Cilia and Ciliary beating Frequency	17
III. Mucus and Mucociliary Clearance (MCC)	18
IV Nasal Matahalism	20

V. Vasculature and Innervations	20
- Mechanism of Drug Absorption	21
- Factors Affecting Drug Absorption	22
1. Anatomical and physiological factors	23
2. Drug Related Factors	23
3. Formulation Related Factors	2:5
- Strategies for improving drug absorption	26
- Applications of Nasal Drug Delivery Systems	29
1. Local Delivery	29
2. Vaccine delivery	30
3. Delivery of drugs to brain	32
4. Systemic Delivery	33
- Nasal Dosage Forms	34
1. Nasal Solutions	34
2. Nasal Suspensions and Emulsions	35
3. Nasal Gels	35
4. Nasal Powders	36
5. Nasal Liposomes	3/7
6. Nasal Microspheres	3/7
7. Nasal Nanoparticles	37
AIM OF THE WORK	41
CHAPTER I	
Formulation and Evaluation of In-situ Gelling Systems	
INTRODUCTION	42
EXPERIMENTAL	46
1. Materials	46
2. Equipment	46
3. Methodology	47
3.1. Preparation of Gellan Gum In -situ Gels	47
3.2. Evaluation of the formulations	47
3.2.1. Drug Content	47

3.2.2. Gelation studies	47
3.2.3. Rheological studies	47
3.2.4.a. In-Vitro release studies	48
3.2.4.b. Kinetic analysis	48
3.2.5. Mucoadhesion Testing:	48
3.2.5.a. In-Vitro mucoadhesion Testing	48
3.2.5.b. In-vivo mucoadhesiveness	49
3.2.6. In-vivo nasal deposition	50
3.2.6.a. Surgical technique	50
3.2.6.b. Deposition of drug solution	50
3.2.7. Mucosa Histopathology	51
3.2.8. Infrared spectroscopy study	51
3.2.9. Stability study	51
RESULTS AND DISCUSSION	52
- In-vitro hydrogel formation	52
- Drug content.	55
- Rheological study	55
- In-vitro release study	63
- Kinetic analysis	65
- In-vitro bioadhesion	70
- In-vivo mucoadhesiveness	72
- In-vivo nasal deposition	75
- Histopathology of nasal mucosa	80
- IR examination	82
- Stability study	82
CONCLUSION	92
CHAPTER II	
Formulation And Evaluation Of In-Situ Gelling Bioadhesive Nasal	
Inserts INTRODUCTION	93
EXPERIMENTAL	98
1. Materials	98

2. Equipment	98
3. Methodology	99
3.1. Insert preparation	99
3.2. Characterization of inserts	99
3.2.1. Drug Content Uniformity	99
3.2.2. Thickness	ç _' 9
3.2.3. Surface pH	99
3.2.4. Water uptake	100
3.2.5.a. In-vitro drug release	101
3.2.5.b. Analysis of drug release data	101
3.2.6. Hydrophilicity of inserts	102
3.2.7. In-vitro Bioadhesion Testing	102
3.2.7.a. Modified Balance Method	102
3.2.7.b. Displacement Method	102
3.2.8. Differential Scanning Calorimetry	103
RESULTS AND DISCUSSION	104
- Hydrophilicity of the inserts	106
- Water uptake and swelling	106
- Bioadhesion	112
- In-vitro drug release	117
- Kinetic analysis	123
- Thermal Analysis	124
CONCLUSION	130
CHAPTER III	
Formulation and Evaluation of Nasal Bioadhesive Sodium Alginate Microspheres	
INTRODUCTION	1.31
EXPERIMENTAL	1.35